Figure 10. Sea level rise maps for Dosewallips State Park. The +1 and +2 foot sea level rise values shown on the maps are proximate to or within the current range of sea level rise projected for Washington for 2050 (mean of +6 in. with a range of -1 to +19 in.) and 2100 (mean of +24 in. with a range of +4 to +56 in.) (NRC 2012). A 1% annual probability storm surge value of +3 feet is also mapped. The maps do not capture the dynamic effects of coastal erosion and bluff sloughing, which can affect the reach of inundation zones over time. Figure source: R. Norheim, UW Climate Impacts Group.
Figure 11. Sea level rise maps for Fort Casey State Park. The +1 and +2 foot sea level rise values shown on the maps are proximate to or within the current range of sea level rise projected for Washington for 2050 (mean of +6 in. with a range of -1 to +19 in.) and 2100 (mean of +24 in. with a range of +4 to +56 in.) (NRC 2012). A 1% annual probability storm surge value of +3 feet is also mapped. The maps do not capture the dynamic effects of coastal erosion and bluff sloughing, which can affect the reach of inundation zones over time. Figure source: R. Norheim, UW Climate Impacts Group.
Figure 12. Sea level rise maps for Fort Ebey State Park. The +1 and +2 foot sea level rise values shown on the maps are proximate to or within the current range of sea level rise projected for Washington for 2050 (mean of +6 in. with a range of -1 to +19 in.) and 2100 (mean of +24 in. with a range of +4 to +56 in.) (NRC 2012). A 1% annual probability storm surge value of +3 feet is also mapped. The maps do not capture the dynamic effects of coastal erosion and bluff sloughing, which can affect the reach of inundation zones over time. Figure source: R. Norheim, UW Climate Impacts Group.
Figure 13. Sea level rise maps for Fort Flagler State Park. The +1 and +2 foot sea level rise values shown on the maps are proximate to or within the current range of sea level rise projected for Washington for 2050 (mean of +6 in. with a range of -1 to +19 in.) and 2100 (mean of +24 in. with a range of +4 to +56 in.) (NRC 2012). A 1% annual probability storm surge value of +3 feet is also mapped. The maps do not capture the dynamic effects of coastal erosion and bluff sloughing, which can affect the reach of inundation zones over time. Figure source: R. Norheim, UW Climate Impacts Group.
Figure 14. Sea level rise maps for Fort Worden State Park. The +1 and +2 foot sea level rise values shown on the maps are proximate to or within the current range of sea level rise projected for Washington for 2050 (mean of +6 in. with a range of -1 to +19 in.) and 2100 (mean of +24 in. with a range of +4 to +56 in.) (NRC 2012). A 1% annual probability storm surge value of +3 feet is also mapped. The maps do not capture the dynamic effects of coastal erosion and bluff sloughing, which can affect the reach of inundation zones over time. Figure source: R. Norheim, UW Climate Impacts Group.
Figure 15. Sea level rise maps for Iceberg Island State Park. The +1 and +2 foot sea level rise values shown on the maps are proximate to or within the current range of sea level rise projected for Washington for 2050 (mean of +6 in. with a range of -1 to +19 in.) and 2100 (mean of +24 in. with a range of +4 to +56 in.) (NRC 2012). A 1% annual probability storm surge value of +3 feet is also mapped. The maps do not capture the dynamic effects of coastal erosion and bluff sloughing, which can affect the reach of inundation zones over time. Figure source: R. Norheim, UW Climate Impacts Group.
Figure 16. Sea level rise maps for Illahee State Park. The +1 and +2 foot sea level rise values shown on the maps are proximate to or within the current range of sea level rise projected for Washington for 2050 (mean of +6 in. with a range of -1 to +19 in.) and 2100 (mean of +24 in. with a range of +4 to +56 in.) (NRC 2012). A 1% annual probability storm surge value of +3 feet is also mapped. The maps do not capture the dynamic effects of coastal erosion and bluff sloughing, which can affect the reach of inundation zones over time. Figure source: R. Norheim, UW Climate Impacts Group.
Figure 17. Sea level rise maps for Jones Island State Park. The +1 and +2 foot sea level rise values shown on the maps are proximate to or within the current range of sea level rise projected for Washington for 2050 (mean of +6 in. with a range of -1 to +19 in.) and 2100 (mean of +24 in. with a range of +4 to +56 in.) (NRC 2012). A 1% annual probability storm surge value of +3 feet is also mapped. The maps do not capture the dynamic effects of coastal erosion and bluff sloughing, which can affect the reach of inundation zones over time. Figure source: R. Norheim, UW Climate Impacts Group.
Figure 18. Sea level rise maps for Joseph Whidbey State Park. The +1 and +2 foot sea level rise values shown on the maps are proximate to or within the current range of sea level rise projected for Washington for 2050 (mean of +6 in. with a range of -1 to +19 in.) and 2100 (mean of +24 in. with a range of +4 to +56 in.) (NRC 2012). A 1% annual probability storm surge value of +3 feet is also mapped. The maps do not capture the dynamic effects of coastal erosion and bluff sloughing, which can affect the reach of inundation zones over time. Figure source: R. Norheim, UW Climate Impacts Group.
Figure 19. Sea level rise maps for Kopachuck State Park. The +1 and +2 foot sea level rise values shown on the maps are proximate to or within the current range of sea level rise projected for Washington for 2050 (mean of +6 in. with a range of -1 to +19 in.) and 2100 (mean of +24 in. with a range of +4 to +56 in.) (NRC 2012). A 1% annual probability storm surge value of +3 feet is also mapped. The maps do not capture the dynamic effects of coastal erosion and bluff sloughing, which can affect the reach of inundation zones over time. Figure source: R. Norheim, UW Climate Impacts Group.
Figure 20. Sea level rise maps for Larrabee State Park. The +1 and +2 foot sea level rise values shown on the maps are proximate to or within the current range of sea level rise projected for Washington for 2050 (mean of +6 in. with a range of -1 to +19 in.) and 2100 (mean of +24 in. with a range of +4 to +56 in.) (NRC 2012). A 1% annual probability storm surge value of +3 feet is also mapped. The maps do not capture the dynamic effects of coastal erosion and bluff sloughing, which can affect the reach of inundation zones over time. Figure source: R. Norheim, UW Climate Impacts Group.