3.2.2 Affected Environment

3.2.2.1 Streams

The streams identified in the Study Area flow into Blanchard Creek and eventually the Middle Spokane River watershed. The primary source of hydrology to ephemeral and perennial stream channels within the Study Area is runoff from snow melt and seasonal storm events.

Streams in the Study Area were characterized consistent with the Washington Department of Natural Resources (DNR) Water Typing System. The DNR typing system is a system for classifying streams and other water bodies to determine if they are utilized by fish, or whether they experience perennial or seasonal flow.

The water type classifications currently in use are described in the forest practices rules WAC 222-16 (see Section 031). Water types are based on either a stream or waterbody’s designation as a significant water, on the likelihood that a stream is potentially used by fish based on its size and gradient, and/or whether a stream flows year-round (perennial). If a stream or waterbody is known to be used by fish, or fish are observed within it, it is classified as a fish-bearing water (DNR 2011).

Table EIS 3.2-1 describes the water type designations in use by DNR Forest Practices:

<table>
<thead>
<tr>
<th>Water Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type “S” = Shoreline</td>
<td>Streams and waterbodies that are designated “shorelines of the state” as</td>
</tr>
<tr>
<td>(formerly type 1)</td>
<td>defined in chapter 90.58.030 RCW.</td>
</tr>
<tr>
<td>Type “F” = Fish</td>
<td>Streams and waterbodies that are known to be used by fish, or meet the</td>
</tr>
<tr>
<td>(formerly type 2 or 3)</td>
<td>physical criteria to be potentially used by fish. Fish streams may or</td>
</tr>
<tr>
<td></td>
<td>may not have flowing water all year; they may be perennial or seasonal.</td>
</tr>
<tr>
<td>Type “Np” = Non-Fish Perennial</td>
<td>Streams that have flow year-round, but do not meet the physical</td>
</tr>
<tr>
<td>(formerly type 4)</td>
<td>criteria of a Type F stream. This also includes streams that have been</td>
</tr>
<tr>
<td></td>
<td>proven not to contain fish using methods described in Forest Practices</td>
</tr>
<tr>
<td></td>
<td>Board Manual Section 13.</td>
</tr>
<tr>
<td>Type “Ns” = Non-Fish Seasonal</td>
<td>Streams that do not have surface flow during at least some portion of</td>
</tr>
<tr>
<td>(formerly type 5)</td>
<td>the year, and do not meet the physical criteria of a Type F stream.</td>
</tr>
</tbody>
</table>

Source: DNR 2011

The wetland delineation performed during the summer of 2013 identified ten stream segments in the Study Area. The ten streams were determined to be unnamed tributaries to Blanchard Creek and were classified as Type Np waters (see Appendix D and Figure EIS-2). Only streams that exhibited perennial flow at the time of the site visit were included in the delineation mapping. Each of these drainages was followed upslope to the point where water first began flowing over the ground surface (i.e., the perennial initiation point).
Table EIS 3.2-2: Characteristics of the Delineated Streams in Project Site

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Receiving Water</th>
<th>WDNR Stream Type(^a)</th>
<th>Minimum Buffer Width (feet)(^b)</th>
<th>Approximate Length within Project Site (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream 1</td>
<td>Blanchard Creek</td>
<td>Np</td>
<td>75</td>
<td>191</td>
</tr>
<tr>
<td>Stream 3a</td>
<td>Blanchard Creek</td>
<td>Np</td>
<td>75</td>
<td>1,838</td>
</tr>
<tr>
<td>Stream 3b</td>
<td>Blanchard Creek</td>
<td>Np</td>
<td>75</td>
<td>1,124</td>
</tr>
<tr>
<td>Stream 4a</td>
<td>Blanchard Creek</td>
<td>Np</td>
<td>75</td>
<td>1,817</td>
</tr>
<tr>
<td>Stream 5a</td>
<td>Blanchard Creek</td>
<td>Np</td>
<td>75</td>
<td>403</td>
</tr>
<tr>
<td>Stream 5b</td>
<td>Blanchard Creek</td>
<td>Np</td>
<td>75</td>
<td>2,206</td>
</tr>
<tr>
<td>Stream 6a</td>
<td>Blanchard Creek</td>
<td>Np</td>
<td>75</td>
<td>868</td>
</tr>
<tr>
<td>Stream 6b</td>
<td>Blanchard Creek</td>
<td>Np</td>
<td>75</td>
<td>564</td>
</tr>
<tr>
<td>Stream 6c</td>
<td>Blanchard Creek</td>
<td>Np</td>
<td>75</td>
<td>885</td>
</tr>
<tr>
<td>Stream 7</td>
<td>Blanchard Creek</td>
<td>Np</td>
<td>75</td>
<td>143</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>10,451</td>
</tr>
</tbody>
</table>

\(^a\) Stream type based on WDNR Stream Typing System per WAC 222-16-031.
\(^b\) Spokane County buffer widths determined per Spokane County Code Section 11.20.060(C)(1)(h)

The streams observed typically consist of relatively straight, narrow, v-shaped channels with gradients greater than 20 percent. Channel widths are typically 1 to 2 feet at the perennial initiation point (PIP) and gradually increase to 3 to 4 feet wide by the time the stream exits the project site (i.e., northern portion of the Study Area). Offsite, these channels continue to widen as they move downslope, with channel widths of up to 6 feet observed along the Chair 4 Road at the outer edge of the PASEA. Flow rates observed at the time of the site visits were typically less than 0.5 cubic feet per second (cfs), with a few streams flowing at 1 to 2 cfs.

3.2.2.2 Wetlands

The 2013 wetland delineation confirmed and updated the reconnaissance level survey work performed in support of the 2011 SEIS. As a result, five wetlands were identified and mapped throughout the entire Mount Spokane Study Area for impact analysis. Wetlands were identified and mapped using the three-parameter approach outlined in the Corps of Engineers Wetlands Delineation Manual (Environmental Laboratory 1987). Delineated wetlands include one large palustrine scrub-shrub (PSS)/slope wetland with palustrine emergent (PEM) components (Wetland A), and four smaller PSS/slope wetlands (Wetlands B, C, D, and E). These wetlands are further discussed below.

Wetlands were also classified using the Washington Department of Ecology (DOE) Eastern Washington Wetland Rating System. The “rating” categories are intended to be used as the basis for developing standards for protecting and managing the wetlands to reduce further loss of their value as a resource. Some decisions that can be made based on the rating include the width of buffers needed to protect the wetland from adjacent development, the mitigation ratios needed to compensate for impacts to the wetland, and permitted uses in the wetland. Spokane County regulates wetland buffers based on the DOE...
wetland rating form through the Spokane County Critical Areas Ordinance (CAO). The DOE rating system uses three categories (e.g., water quality functions, hydrologic functions, and habitat functions) to determine the significance, rarity, replaceability, and functionality. Wetlands providing the highest and most unique functions and values are Category 1 wetlands, and wetlands that have the lowest levels of functions (scores less than 30 points) are Category IV wetlands (DOE 2007).

The wetlands identified in the field are summarized in Table EIS 3.2-3, and are rated as Category II-IV wetlands.

Table EIS 3.2-3:
Characteristics of the Delineated Wetlands in Project Site

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cowardin Class<sup>a</sup></th>
<th>HGM Class<sup>b</sup></th>
<th>Ecology Wetland Rating<sup>c</sup></th>
<th>Minimum Buffer Width (feet)<sup>d</sup></th>
<th>Area in Project Site (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland A</td>
<td>PSS, PEM</td>
<td>Slope</td>
<td>Category II</td>
<td>110</td>
<td>2.70</td>
</tr>
<tr>
<td>Wetland B</td>
<td>PSS</td>
<td>Slope</td>
<td>Category II</td>
<td>75</td>
<td>0.41</td>
</tr>
<tr>
<td>Wetland C</td>
<td>PSS</td>
<td>Slope</td>
<td>Category IV</td>
<td>40</td>
<td>0.05</td>
</tr>
<tr>
<td>Wetland D</td>
<td>PSS</td>
<td>Slope</td>
<td>Category IV</td>
<td>40</td>
<td>0.79</td>
</tr>
<tr>
<td>Wetland E</td>
<td>PSS</td>
<td>Slope</td>
<td>Category II</td>
<td>75</td>
<td>0.31</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.26</td>
</tr>
</tbody>
</table>

^a Cowardin Class of wetland within Study Area based on *Classifications of Wetlands and Deepwater Habitats of the United States* (U.S. Fish and Wildlife Service 1979).

^b HGM Class of wetlands within Study Area based on *A Hydrogeomorphic Classification for Wetlands* (Brinson 1993) and the additional classification guidance provided in the *Washington State Wetland Rating System for Eastern Washington* (Hruby 2004).

^c Ecology rating based on the *Washington State Wetland Rating System for Eastern Washington* (Hruby 2004), data forms provided in Appendix D.

^d Spokane County buffer widths determined per Spokane County Code Section 11.20.050(C), Alternative 3.

Wetland A

Wetland A is the largest wetland occurring in the Study Area and is located in the southern portion of the project site, just north of the former location of the historic Mt. Spokane ski lodge (see Figure EIS-14 and Figure 11 of Appendix D). It consists of a relatively large PSS/slope wetland that extends offsite to the south. Wetland A is associated with multiple mid-slope seeps and contains the PIPs of two stream channels, both of which flow to Burping Brook. It is primarily dominated by scrub-shrub vegetation but includes a small area of PEM wetland located in a relatively flat area near in its central portion.

Wetlands B and C

Wetland B and C are PSS/slope wetlands located in the northern portion of the project site, along a perennial tributary (Stream 3a) to Blanchard Creek (see Figure EIS-14 and Figure 11 of Appendix D). They consist of PSS/slope wetlands that occur on small topographic benches that have developed on moderately steep forested slopes. Based on only the functions scores from the DOE rating form, both
Wetlands B and C would be classified as Category IV wetlands. However, due to the presence of greater than 50 percent areal cover of Sitka alder, the classification of Wetland B was adjusted to Category II.

Wetlands D and E

Wetlands D and E are PSS/slope wetlands that are associated with mid-slope seeps (see Figure EIS-14 and Figure 11 of Appendix D). Both are located upslope from perennial stream channels that drain to Blanchard Creek. Wetland D is located offsite to the northwest and is included in this report because it is within 150 feet of the project site. Wetland E is located in the northern portion of the project site, upslope from Stream 1. Like Wetlands B and C, these wetlands are situated on small, relatively flat benches that occur on moderately steep forested slopes.

Based on only the functions scores from the DOE rating form, both Wetlands D and E were classified as Category IV wetlands. Similar to Wetlands B and C, Wetland E has 50 percent areal cover by Sitka alder, therefore it was re-classified as a Category II wetland.

3.2.2.3 Water Quality

No water quality monitoring stations occur within the Study Area or within Mount Spokane State Park. The main source of potential water quality degradation within the Study Area would be vehicular traffic during the summer as visitors to the Vista House travel to the summit of Mount Spokane. Vehicular traffic has the potential to pollute surface waters in the Study Area as oil and tire wear particles have the potential to be washed from the Summit Road into nearby drainages.

3.2.3 Environmental Consequences

3.2.3.1 Alternative 1

Streams

Under Alternative 1, no expansion is proposed; therefore, no impacts to streams would occur. As a result, the condition of the streams within the Mount Spokane Study Area would remain unchanged. Impacts on water quality from the existing access road would continue to occur under Alternative 1.

Wetlands

Under Alternative 1, the proposed expansion of Mount Spokane Ski Area would not occur, and no direct or indirect impacts to wetlands would occur. Therefore, the condition of the wetlands within the Mount Spokane Study Area would remain as described in section 3.2.2.2 – Affected Environment.

Water Quality

Under Alternative 1, the Mount Spokane Ski Area expansion would not occur; therefore, no impacts to water quality would occur.
3.2.3.2 Alternative 2

Streams

Under Alternative 2, no direct impacts to stream channels within the Study Area would occur; therefore, no direct impacts to streams would result. Construction of the new chairlift and seven ski trails would require crossing several streams (as depicted in Figure EIS-15). Wooden or snow ski bridges at the ski trail drainage crossings would be utilized at these locations so that culverts would not be needed. In the event a culvert is needed to safely span the drainage, a bottomless arch culvert would be the primary structure to develop the crossing. Corduroy crossings (felled tree debris) over intermittent and perennial streams would be utilized during the construction phase (if necessary) and removed after the completion of construction.

Approximately, 3.9 acres of direct impacts to stream buffers from clearing and/or grading would occur under Alternative 2. Most of the proposed grading and/or clearing work would result in short-term, direct impacts to stream buffers because the areas of proposed grading or clearing would be restored through replacement of topsoil and/or revegetation with native species. Following construction, these areas would be maintained as ski trails, so there would be a long-term direct impact to some buffer functions, but functions such as filtering sediment, floodwater storage, and stream bank stabilization would not be affected over the long-term because the trails would be maintained in a modified vegetative condition. These strategies would be further detailed in a mitigation plan submitted with permit documents to Spokane County.

Alternative 2 would result in approximately 32.6 acres of grading to construct chairlift terminals, towers and portions of the ski trails. During construction, the potential for short-term construction related impacts to water quality could occur due to runoff from construction areas providing a vector for sediment to enter streams.

The potential impacts to these stream functions would be avoided and or minimized through implementation of the Mitigation Measures detailed in Table EIS 2-4 to reduce soil erosion and sediment yield through implementation of a SWPPP. Based on the successful implementation of Mitigation Measures, there would be no measurable long-term indirect impacts to streams under Alternative 2. However, short-term indirect impacts to these stream reaches may occur during the construction of ski trails and other facilities. MS 2000 would also develop a Spill Prevention and Response Plan as part of the construction documents. Petroleum products will not be discharged into the drainages or bodies of water. No fuels or construction machinery will be stored adjacent to waterbodies.

Wetlands

Wetlands can be directly impacted by construction activities that require grading, which displaces wetland area and removes all functionality of the wetland through the placement of fill material and/or soil excavation in wetlands. Grading activities can also modify the hydrology of wetlands by changing the
existing drainage patterns, which can alter the hydrologic regime and cause a wetland to become impaired and/or defunct.

As identified in Figure EIS-15, one proposed trail (Trail 1) would be located in an area containing a slope wetland (Wetland A). Trail 1, located on the eastern edge of the Study Area is proposed in a relatively open area. This trail is proposed in an area where blowdown of large trees is extensive and is currently dominated by dense thickets of Sitka alder (shrub) within the wetland complex, which is typically less than 10 feet tall (see Appendix D). Additionally, Trail 6 would be located through a portion of Wetland E, a 0.31-acre Category II wetland. Implementation of Alternative 2 would not result in the filling of or any grading in wetland features, however limited vegetation management (e.g., mowing, tree island removal) would be necessary to formalize these ski trails resulting in a change in the vegetative structure within the wetlands. Therefore, Alternative 2 would result in approximately 1.9 acres of direct wetland impacts related to vegetation management and 4.0 acres of vegetation management within wetland buffers.

For clarity, State Parks approval of the project proposal would not authorize construction within these features (e.g., wetlands, streams) on its own, as the project would require the submittal, review and approval of a wetland/stream mitigation plan by Spokane County.

Development activities in the uplands adjacent to wetlands can indirectly affect wetland functions. The location of the development activity in relationship to the wetland and the type of development activity dictates the degree of impact and what wetland functions would be affected. Primary indirect impacts to wetlands typically occur from changes in hydrology and sediment sources. Under Alternative 2, grading would take place upslope of all the wetlands identified in Figure 11 of Appendix D and Figure EIS-14. As a result, the potential for increased sediment delivery to these wetlands would be increased during construction. Implementation of the Mitigation Measures detailed in Table EIS 2-4 would reduce the potential for these indirect impacts. The introduction of new disturbance adjacent to or within wetland buffers (as detailed in the Spokane County Critical Areas Ordinance), such as areas of grading activities and ski trail clearing would also result in increased potential for the introduction of noxious species into wetlands. Implementation of the Mitigation Measures outlined in Table EIS 2-4 would reduce the risk of the introduction of noxious species into wetlands as a result of the indirect impacts from clearing, grading, and utility trenching within the immediate vicinity of wetlands in the Mount Spokane Study Area.

Operational and maintenance activities that indirectly impact wetlands would primarily be limited to wetlands on proposed ski trails under Alternative 2. These activities include mowing vegetation, the maintenance of contour ditch lines (i.e., water bars), and snow management. Potential impacts to wetlands from operation and maintenance include increased sedimentation and the growth of noxious weeds. These impacts are usually long-term because they would cause wetlands to lose some of their functions.

Water Quality

Direct impacts to water quality are impacts that would occur from new point sources, either chemical or thermal. Activities that are most likely to indirectly impact water quality within the Mount Spokane Study Area...
Area are those that may occur within wetland or stream buffers, such as clearing of riparian vegetation, construction of ski area facilities, or grading for ski trails. Potential indirect impacts to water quality include the following:

- Increased sediment yield to streams and wetlands from clearing and grading,
- Increased pollutant runoff from construction equipment into streams and wetlands, and
- Increased water temperatures resulting from the removal of riparian vegetation and subsequent increases in solar radiation.

There would be no new point sources of pollution (chemical or thermal) that would affect water quality within the Middle Spokane River watershed; therefore, no direct impacts to water quality would occur under Alternative 2. Indirect impacts to water quality could occur from the proposed project through increased sediment yield and changes in turbidity, pH, stream temperature, and dissolved oxygen in the perennial streams that flow through and out of the Study Area. However, due to the undeveloped nature of the park (reducing cumulative watershed effects) and the relatively small drainage basin these streams collect, these impacts are not anticipated to be measurable at the watershed scale.

Under Alternative 2, clearing and grading for chairlift and trail construction within wetland or stream buffers would increase the risk of erosion and sediment yield to streams and wetlands. Research has indicated that silt fences trap 90 percent (or more) of sediment from hillslope erosion (Robichaud and Brown 2002). Additionally, revegetation of exposed hillslopes has been shown to reduce erosion by greater than 70 percent using native vegetation (Grace 2002). The use of silt fences would constitute a short-term measure during construction (silt fences are typically removed after the site stabilizes) and could reduce potential sediment yields to streams by 90 percent, although it has been estimated that actual effectiveness would be 60 to 65 percent (Grace 2002).

Implementation of Mitigation Measures described in Table EIS 2-4 (e.g., SWPPP, Spill Prevention and Response Plan), as well as the review conducted by Spokane County, would minimize the potential for short-term, indirect delivery of pollutants to streams and wetlands during construction. The requirements of the SWPPP would ensure state water quality standards are met through the water quality monitoring program and any necessary corrective actions would be taken on an as-needed basis.

Alternative 3

Streams

Similar to Alternative 2, no direct impacts to stream channels within the Study Area would occur; therefore, no direct impacts to streams would result. Under Alternative 3, ski trail crossings of perennial streams would be as described in Alternative 2. Construction of ski trails and perennial crossings would require approximately 2.6 acres of vegetation clearing and/or grading within stream buffers to formalize ski trails. The short and long-term impacts to these buffers would be as described in Alternative 2.
III-40 Washington State Parks and Recreation Commission

Wetlands

Alternative 3 would require approximately 0.34 acre of vegetation clearing within the buffer of Wetland A to formalize Trail 1. This buffer impact may be reduced or eliminated altogether through the use of buffer averaging during the final approval process with Spokane County. Additionally, approximately 0.13 acre and 0.62 acre of direct impacts would occur within Wetland E and its buffer, respectively, due to vegetation management (e.g., mowing, tree island removal) necessary to construct Trail 6. Potential impacts to wetlands and wetland buffers from clearing would be reduced through implementation of Mitigation Measures (e.g., preparation of a wetland mitigation plan) outlined in Table EIS 2-4.

For clarity, Alternative 3 adjusts the alignment of Trail 1 to avoid the slope wetland categorized during the 2013 wetland delineation (discussed above in section 3.2.2.2), reducing the impact on this resource and its associated buffer by 4.8 acres when compared to Alternative 2 (see Figure EIS-16).

Water Quality

Under Alternative 3, no long-term impacts to water quality in WRIA 57 are anticipated. By design, implementation of Alternative 3 would result in 17.4 acres less grading when compared to Alternative 2. Therefore, the potential for short-term, construction related impacts during project implementation would be less than Alternative 2.

3.2.4 Mitigation Measures

Potential direct and indirect effects to this resource from the action alternatives would be minimized through implementation of the BMPs and Mitigation Measures described in Table EIS 2-4 and through project specific operational plans and/or approvals (e.g., Spokane County).

3.2.5 Cumulative Effects

Cumulative impacts are the effects that may result from the incremental impact of an action when added to other past, present, and reasonably foreseeable future actions. Generally, an impact can be considered cumulative if: a) effects of several actions occur in the same locale; b) effects on a particular resource are similar in nature; and c) effects are long-term in nature. Potential areas where cumulative impacts to watershed resources may occur as a result of the construction and operation of new ski area facilities are discussed below.

Projects and construction activities occurring within wetlands and streams have the potential to alter plant communities and functional processes of the riparian zone. These typical wetland processes include sediment filtration, stream bank stabilization, floodwater storage (duration and timing of flow), LWD recruitment, and stream channel shading (USDA 2007). Conversion of forest to meadow is also likely to alter hydrologic functions within the project area (e.g., evapotranspiration reduction, infiltration rates). While wetland and stream buffer widths typically encompass an area greater than the functional riparian zone, construction activities within the buffers occur in closer proximity to watershed resources. Therefore, there is a higher potential for projects occurring within wetland and stream buffers to impact...
watershed resources compared to projects occurring outside. As such, impacts to wetland and stream buffers can be used as a surrogate measure for long-term cumulative impacts to Watershed Resources. Therefore, this analysis considers all past, present, and reasonably foreseeable future projects with effects occurring in proximity to wetlands and streams.

Short-term cumulative impacts to Watershed Resources can occur when multiple projects overlap in space and time. Future projects that may overlap in space and time with the action alternatives include implementation of the Comprehensive Trail Plan, which is part of the 2010 Master Facilities Plan. The Comprehensive Trail Plan contemplates a multi-use trail in the PASEA, depending upon the land classification adopted (see Section II). For purposes of this analysis, short-term impacts are considered with regard to water quality. Impacts to water quality are most likely to result from increased sedimentation and contaminants such as equipment oil, grease, or fuel spills. Since the use of BMPs is typically required at the site scale to minimize erosion, short-term water quality impacts are not expected to be measurable at large scales (i.e., the watershed scale).

3.3 VEGETATION

This section describes the vegetation communities, the occurrences of known species and habitats of conservation concern, and noxious weeds within the Mount Spokane Study Area. This section is divided into two main parts—Affected Environment and Environmental Consequences. The Affected Environment contains descriptions of the existing conditions within the Mount Spokane Study Area, defined as the proposed 279-acre expansion area. All of the proposed projects (e.g., chairlift, ski trails) described in Alternatives 2 and 3 occur entirely in this 279-acre Study Area. The Environmental Consequences section analyzes the potential impacts to the vegetation communities, known species and habitats of conservation concern, and noxious weeds as a result of the implementation of the No Action Alternative and action alternatives. The content of this chapter is informed by data collected during the botanical surveys (summarized in Appendix B – Biological Surveys Conducted in the SEIS Analysis Area at Mount Spokane State Park During 2010) that considered an expanded Study Area of approximately 490 acres and the wildlife habitat surveys summarized in Appendix E – Draft Habitat Management Plan for Mount Spokane Ski and Snowboard Park Proposed Expansion Area that analyzed vegetative communities within and extending 800 meters outside the 279-acre Study Area. These studies were intended to inform the pre-planning process and to provide a description of vegetative communities in adjacent, undisturbed forested areas (e.g., potential edge habitat). The expanded Study Area also includes a description of vegetation communities within the now-eliminated connector trail corridor between Chair 4 and Chair 6 (see section 2.1.1.3).

3.3.1 Introduction

The Mount Spokane Study Area occupies a unique position on the landscape in Spokane County. It is the highest point in the county and is located approximately 22 miles northeast of the City of Spokane,
Washington. The Mount Spokane Study Area is located entirely within the boundaries of Mount Spokane State Park.

State Parks and MS 2000 have conducted field surveys for vegetation within and adjacent to the Study Area between 2006 and 2010 (see Table EIS 3.3-1). Additional vegetation surveys (ICF 2013) were conducted during development of the Draft Habitat Management Plan, including coring 108 trees to identify the distribution and presence of older trees within the Study Area (see Appendix E).

<table>
<thead>
<tr>
<th>Date</th>
<th>Report Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006–2007</td>
<td>Forest Health Assessment and Plan for the 2006–2007 project area of Mount Spokane State Park</td>
<td>Pacific Biodiversity Institute</td>
</tr>
<tr>
<td>2009</td>
<td>2009 Vegetation Impacts Assessment of Proposed Trail Additions in Mount Spokane State Park</td>
<td>Pacific Biodiversity Institute</td>
</tr>
<tr>
<td>2010</td>
<td>Biological Surveys Conducted in the SEIS Analysis Area at Mount Spokane State Park During 2010</td>
<td>Pacific Biodiversity Institute</td>
</tr>
<tr>
<td>2013</td>
<td>Draft Habitat Management Plan Mount Spokane Ski and Snowboard Park Proposed Expansion Area</td>
<td>ICF International</td>
</tr>
</tbody>
</table>

Biologists and other specialists conducted field surveys within the Mount Spokane Study Area, reviewed literature, interpreted color aerial photographs, and contacted state and federal resource agencies to accumulate information on vegetation resources. Resources consulted include existing literature and GIS datasets in the Mount Spokane area (Smith and Morrison 2009; Smith 2009; Snetsinger and White 2009; Wooten and others 2009; Morrison and others 2007; Crawford 1993). Biologists also reviewed species lists of potential rare plants listed by the Washington Natural Heritage Program based on species on or adjacent to the Colville National Forest.

Proposed management direction activities for vegetation are included in the Mitigation Measures as described in Chapter 2 (see Table EIS 2-4). The Mitigation Measures provide guidance for the long-term management of vegetation in the Mount Spokane Study Area and identify measures for managing vegetation in ski trails and around supporting ski facilities and infrastructure. These Mitigation Measures would be used in conjunction with any project specific permit conditions imposed by Spokane County and the guidelines included within implementation documents required by State Parks (e.g., Vegetation Maintenance Plan, Trail Clearing Prescriptions Plan) for vegetation management during project implementation.

3.3.2 Affected Environment

The Study Area extends from an elevation of approximately 5,850 feet at the summit of Mount Spokane to an elevation of approximately 4,420 feet where the proposed bottom terminal of the chairlift would be located (see Figure EIS-2).
Section III. Mount Spokane State Park Proposed Ski Area Expansion
Final Environmental Impact Statement

Forest, shrub, herbaceous, and talus communities are present throughout the Study Area. Snowmelt varies by topography and cover type, providing a range of seasonal habitats across the landscape. Additionally, woodlands within the central and southern portions of the Study Area have been extensively affected by wind and snow damage, often followed by bark beetle attacks, with some forest communities in this area currently supporting less than 60 live trees per acre (see Appendix B). An examination of historic aerial photographs indicates a forest stand mortality event occurred sometime between 1995 and 2005. Prior to this time, most of the expansion area was covered by dense coniferous forest except for the southern portion where alpine/subalpine meadows and shrublands occurred.

Environmental factors, in conjunction with human interventions, have given rise to the existing land cover in the Mount Spokane Study Area (see section 1.2 – Background). The area is characterized by a mosaic of vegetation communities and limited developed areas (e.g., roads, cell phone tower). Forests in this area typically have a thick undergrowth of woody shrubs and a build-up of small trees and woody debris. Appendix C includes an assessment of fire occurrence and history within Mount Spokane State Park. Since 1970, no forest fires appear to have occurred within the Study Area and relatively few fires have occurred within Mount Spokane State Park, when compared to adjacent private lands (see Appendix C, Figure 63). Descriptions of the vegetation communities within the Mount Spokane Study Area are presented in this section. Additional information regarding vegetation within the Mount Spokane Study Area can be found in Appendix B.

3.3.2.1 Existing Vegetation Communities

Field surveys identified 17 primary plant associations within the Study Area, including non-vegetative cover types, such as talus or developed areas. Plant associations are a key habitat attribute for many wildlife species and are used as a metric to discuss the dominant overstory and understory components of the Study Area (see Figure EIS-5). These associations are listed in Table EIS 3.3-2 along with their acreage of occurrence.
Table EIS 3.3-2:
Plant Associations Found in the Study Area

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Map Code</th>
<th>Rank</th>
<th>Acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREST/WOODLAND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subalpine fir/Lady fern</td>
<td>Abies lasiocarpa/Athyrium filix-femina</td>
<td>ABLA/ATFI</td>
<td>G2S2</td>
<td>262.4</td>
</tr>
<tr>
<td>Subalpine fir/Hitchcock’s woodrush</td>
<td>Abies lasiocarpa/Luzula glabrata ssp. hitchcockii</td>
<td>ABLA/LUGLH</td>
<td>G5S2</td>
<td>2.1</td>
</tr>
<tr>
<td>Subalpine fir/Fools huckleberry</td>
<td>Abies lasiocarpa/Menziesia ferruginea</td>
<td>ABLA/MEFE</td>
<td>G5SNA</td>
<td>15.9</td>
</tr>
<tr>
<td>Subalpine fir/Carolina bugbane</td>
<td>Abies lasiocarpa/Trautvetteria caroliniensis</td>
<td>ABLA/TRCA</td>
<td>G3S3</td>
<td><0.01</td>
</tr>
<tr>
<td>Subalpine fir/Thinleaf huckleberry</td>
<td>Abies lasiocarpa/Vaccinium membranaceum</td>
<td>ABLA/VAME</td>
<td>G5SNA</td>
<td>8.4</td>
</tr>
<tr>
<td>Subalpine fir/Bear-grass</td>
<td>Abies lasiocarpa/Xerophyllum tenax</td>
<td>ABLA/XETE</td>
<td>G5S3</td>
<td>200.4</td>
</tr>
<tr>
<td>Western hemlock/Lady fern</td>
<td>Tsuga heterophylla/Athyrium filix-femina</td>
<td>TSHE/ATFI</td>
<td>G2QS2Q</td>
<td>0.3</td>
</tr>
<tr>
<td>Western hemlock/Oak fern</td>
<td>Tsuga heterophylla/Gymnocarpium dryopteris</td>
<td>TSHE/GYDR</td>
<td>G3G4S3</td>
<td>10.0</td>
</tr>
<tr>
<td>Western hemlock/Fool’s huckleberry</td>
<td>Tsuga heterophylla/Menziesia ferruginea</td>
<td>TSHE/MEFE</td>
<td>G2S2S3</td>
<td>15.7</td>
</tr>
<tr>
<td>Western hemlock/Bear-grass</td>
<td>Tsuga heterophylla/Xerophyllum tenax</td>
<td>TSHE/XETE</td>
<td>G2S2</td>
<td>0.3</td>
</tr>
<tr>
<td>SHRUB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitka alder/Mesic forb</td>
<td>Alnus viridis ssp. sinuata/Mesic forb</td>
<td>ALVIS/Forb</td>
<td>G3G4S3S4</td>
<td>1.2</td>
</tr>
<tr>
<td>Sitka alder/Triangle-leaf groundsel</td>
<td>Alnus viridis ssp. sinuata/Senecio triangularis</td>
<td>ALVIS/SETR</td>
<td>G3G4S3S4</td>
<td>3.3</td>
</tr>
<tr>
<td>HERBACEOUS/MEADOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur-flower buckwheat–Green fescue</td>
<td>Eriogonum umbellatum var. majus–Festuca viridula</td>
<td>ERUMM–FEVI</td>
<td>GNRS3</td>
<td>4.4</td>
</tr>
<tr>
<td>Green fescue–Idaho fescue</td>
<td>Festuca viridula–Festuca idahoensis</td>
<td>FEVI–FEID</td>
<td>G2?SNR</td>
<td>3.4</td>
</tr>
<tr>
<td>Spreading phlox/green fescue–Hound’s tongue hawkweed</td>
<td>Phlox diffusa/Festuca viridula–Hieracium cynoglossoides</td>
<td>PHDI3/FEVI–HICY</td>
<td>GNRS3</td>
<td>0.4</td>
</tr>
<tr>
<td>NON-VEGETATED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Talus</td>
<td>Talus</td>
<td>Talus</td>
<td></td>
<td>1.9</td>
</tr>
<tr>
<td>Developed</td>
<td>Developed</td>
<td>Developed</td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>278.8</td>
</tr>
</tbody>
</table>

The NatureServe Network, which includes natural heritage programs and conservation data centers throughout North America, identifies global conservation ranks for species and ecosystems. NatureServe and its member programs use a suite of factors to assess the conservation status (elimination or extirpation risk) of species and ecosystems. Conservation status is summarized as a series of ranks from critically imperiled to secure. These ranks are widely used throughout the conservation community. While they do not have any regulatory authority, they are used as a resource for government agencies responsible for
administration of federal, state and provincial species conservation laws. Global and state ranks (or “G-Ranks,” and “S-Ranks”) are assigned on a scale of 1 through 5. A rank of G1 indicates critical imperilment on a global basis; the ecosystem is at great risk of extirpation. S1 indicates critical imperilment within a particular state (in this case, Washington), regardless of its status elsewhere. In contrast, a G5 rank indicates a species or ecosystem is secure on the global level, with very little risk of extinction (Master et al. 2012). A detailed description of these ranks is provided in Appendix G. The global and state ranks for the plant associations in the Study Area are also included in Table EIS 3.3-2.

Many of these plant associations are considered to be imperiled (approximately 16 percent of acreage) or vulnerable (approximately 57 percent), and several are considered uncommon or possibly unique, particularly those comprising herbaceous meadows and/or wetlands (see Appendix B). These include the following within the Study Area:

- Sitka alder-dominated wetlands (ALVIS/ATFI, ALVIS/Mesic Forb and ALVIS/SETR), and
- Dry open meadows (ERUMM-FEVI, FEVI-FEID, PHDI3/FEVI-HICY) near the summit of Mount Spokane State Park appear to be globally rare, but locally common with more habitat on the summit.

As illustrated in Table EIS 3.3-2, the majority of the Study Area is dominated by forest/woodlands, with most plant associations involving subalpine fir or western hemlock.

3.3.2.2 Forested Communities

Forested communities in the Study Area provide habitats for many wildlife species (e.g., marten, goshawk, numerous invertebrates), fungi, and other life forms. These forests support a mosaic of vegetation rich in structure, diversity, age (varying from young to mature) and biological and physical functions (e.g., nutrient cycling, symbiotic relationships, and hydrologic filtering). The largest trees in the Study Area occur in the lower elevation western hemlock and subalpine fir forests above the Chair 4 Road, while above approximately 5,100 feet, average tree diameters become progressively smaller as forested stands approach the summit of Mount Spokane (see Appendix B and Appendix E, section 6.2).

As noted in Appendix E, these high elevation stands within the central and southern portions of the Study Area have been significantly affected by blowdown during windstorms and have extensive ice damage (natural disturbance events/processes that are typical atop isolated, high elevation mountain), with some stands having less than 60 live trees per acre and numerous snags (see Appendix B, Figure 16). Some of the vegetation polygons that were mapped consisted largely of blowdown logs, snags and a wide diversity of shrubs and herbaceous vegetation, along with small, young trees. Moving north and northwest through the Study Area, canopy closure increases, along with a concurrent decrease in understory vegetation. With few exceptions, the landscape of the Study Area is dominated by native vegetation and supports a diversity of native organisms and natural processes. Exceptions to this include developed areas near the summit of Mount Spokane and the presence of the Summit Road within the Study Area.
Old-growth forest conditions are found in the late stages of stand development and are distinguished by old trees and related structural attributes. Tree age, size, canopy layers, snags, and down trees are attributes that generally define old-growth. These attributes provide essential habitat for wildlife and other species that depend on old-growth or late-successional forests. Development of old-growth is a continuous and variable process that involves gradual changes in a variety of forest structures and functions. These elements may not change at the same rate or be present in the same place at the same time. Therefore, determining the start of the “old-growth stage” is rather arbitrary (Franklin et al. 2005, Hunter and White 1997).

Although eastern and western Washington share many tree species, differences in fire frequency affect the development of older forests. On the coastal Olympic Peninsula, fires may not have occurred for several thousands of years, and western red cedar over 1,000 years old are not uncommon (Van Pelt 2007). In contrast, moist forests in the Selkirk Range, which includes the Study Area, experience more frequent high severity fires, with a fire return frequency estimated between 150 and 250 years (Franklin et al. 2008). Trees older than 200 years are relatively rare, and high intensity wildfires may prevent progression to older forest conditions (Franklin et al. 2008). In the Study Area, where frequent and intense natural disturbance events involving high winds and low temperatures, punctuated by infrequent but potentially catastrophic wildfire and insect infestation events occur, the likelihood of encountering classic “old-growth forest conditions” are considerably lower than those encountered in other environments.

Vegetation survey work conducted by Morrison et al. (2010) and ICF International (2013) on the northwest face of Mount Spokane (see Appendices B and E) evaluated some of the attributes of the forest associations (e.g., canopy layers, snags, basal area, diameter, coarse woody debris, tree age) within and in adjacent areas around the expansion area. Morrison et al. (2010) found that nearly all the forest stands within that study’s expanded 450-acre survey area had some large and small snags of various decay classes and densities, as well as abundant coarse woody debris and multiple canopy layers. Some stands exhibit vertical and horizontal diversification of the forest canopy, which are considered stages of old-growth (Van Pelt 2008). However, trees greater than 150 years old within the expansion area were relatively uncommon (see EIS Illustration 3.3-1 and Appendix E), owing to the high frequency and intensity of disturbance events.

While forests in the Study Area may not meet certain definitions of old-growth, which emphasize tree age and size, the majority of the area (and adjoining unclassified lands) supports natural processes and some of the stands contain older forest attributes (snags, coarse woody debris, multiple canopy layers) that provide habitat for a variety of wildlife species (see Table EIS 3.4-2). For species dependent on mature forest (e.g., northern goshawk), this habitat was identified to be more extensive in the northern and northwestern portion of the Study Area. Additional mature forest occurs within the greater PASEA, north and northwest of the Study Area (see Table EIS 3.4-2 and Appendix E, section 6.0 – HMP Field Studies).
During the summer and fall of 2013, 108 trees were cored intending to provide a general idea of the age of the forests within the Study Area, which would be impacted by the action alternatives. Trees ranging in size from stand average to stand dominant were selected from mature forest stands where clearing for ski development (e.g., clearing, grading) would occur under the action alternatives. Eleven sites were chosen for coring, distributed across upper elevation, mid elevation and lower elevation zones of the expansion area (see Appendix E, Figure 10). These sites were judged to be representative of mature forest conditions throughout the 279-acre Study Area. Areas documented by Morrison et al. (2010) to contain the largest diameter trees in the expansion area were included in the sample sites. The results of this field work are presented in Appendix E, Table 5 and Illustration EIS 3.3-1.

Illustration EIS 3.3-1:
Age Distribution of Cored Trees within the Mount Spokane Ski and Snowboard Park Expansion Area
The coring work found:

- Trees cored from the expansion area ranged in age from 62 to 175 years (see Appendix E, Figure 11, Illustration EIS 3.3-1).12
- The majority of trees cored (88 percent) fell within the age range of 90 to 149 years, with the peak range being between 110 and 129 years (40.7 percent).
- Only 7 trees out of the 108 sampled (6.5 percent) were estimated to be 150 years of age or older.
- Trees cored in the northeast portion of the expansion area had the oldest mean age at 145.2 years, and included four trees older than 150 years.
- Trees cored in the southeast portion of the expansion area had the youngest mean age at 100.3 years.
- Trees at higher elevations were generally smaller (i.e., diameter breast height [dbh]) for a given age than trees at lower elevations, likely reflecting slower growth rates due to more extreme environmental conditions.

See Appendix E, section 6.2 – Tree Coring for more detail on the survey methods used, findings and a regulatory analysis related to this study.

3.3.2.3 Plants of Conservation Concern

A survey to locate plants of conservation concern was conducted in the Mount Spokane Study area during the 2010 field season (Appendix B). Survey methods were based on the USDA rare plant survey handbook (Range Management Staff 2008). The purpose of the survey was to locate any rare vascular plants occurring within the Study Area. Rare plants (species of conservation concern) include federally Endangered or Threatened species or Washington State sensitive, threatened or endangered vascular plant species tracked by the Washington Natural Heritage Program (WNHP).

No vascular plant species of conservation concern were observed during the 2010 rare plant surveys. No state or federally listed vascular plant species are known to occur within the Mount Spokane Study Area. No studies have been performed to determine the presence and extent of non-vascular plant species (e.g., mosses) in the Study Area.

3.3.2.4 Noxious Weeds and Non-Native Species

Noxious weeds are non-native, invasive plants that, when established, are highly destructive, competitive, or difficult to control by cultural or chemical practices. Washington Weed Law (Chapter 17.10 RCW) requires that noxious weeds be controlled to limit adverse effects on agricultural, natural, and human resources of the State. The Washington State Noxious Weed Control Board updates its list of noxious weeds annually and categorizes the species into three classes (e.g., Class A, B, and C).

12 Trees aged through core sampling have the potential to underestimate age. This study assumed the trees took five years to reach breast height. Due to environmental conditions (e.g., harsh climate) trees may take longer than five years to reach that height when establishing.
During field surveys (i.e., *Biological Surveys Conducted in the SEIS Analysis Area at Mount Spokane State Park During 2010*) no noxious weeds were observed growing in the Study Area. Scattered individuals of common tansy (*Tanacetum vulgare*) were observed occurring along roadsides outside of the Study Area. Control of common tansy is not required in Spokane County. Additionally, Parks staff has indicated that orange hawkweed (*Hieracium aurantiacum*) has been observed occurring along the Chair 4 Road at the northern edge of the Study Area. Orange hawkweed is a Class B weed. Control of Class B weeds is decided at the local level and containment is the primary goal. Spokane County mandates control of orange hawkweed.

Within the developed ski area boundary, volunteer surveys conducted during 2009 identified the presence of Saint Johnswort (*Hypericum perforatum*), common tansy, spotted knapweed (*Centaurea stoebe*), Dalmatian toadflax (*Linaria dalmatica ssp. dalmatica*), and Canada thistle (*Cirsium arvense*). Beginning in 2010, Mount Spokane Ski and Snowboard Park began implementing a noxious weed management program. This program is ongoing and is anticipated to reduce noxious weeds along within the existing developed ski area boundaries.

3.3.3 Environmental Consequences

Construction and/or operation of facilities associated with the Mount Spokane proposal have the potential to impact the composition, structure, and function of vegetation communities in the Mount Spokane Study Area. Impacts may be short-term or long-term in duration. In addition, these impacts may be further classified as direct or indirect. Many impacts will be poorly known or understood.

Long-term impacts result from the conversion or degradation of existing vegetation community to another community type, such as forest removal to be maintained as ski trails or chairlift terminals. Long-term impact activities include clearing and clearing with grading for the construction of ski trails resulting in a loss of natural vegetation and habitats that will not revert to a pre-development condition in a two- to three-year period (i.e., the removal of forested communities, construction of impervious surfaces, etc.). Additional long-term impacts would include fragmentation and introduction of exotic species. These impacts can extend well into the surrounding vegetation communities, causing near- and long-term changes in their composition (see section 3.4 – Wildlife).

Activities that result in a short-term disturbance to vegetation communities include the installation of buried utility lines and grading in vegetation communities for the construction of ski trails and related ski area infrastructure. Short-term impacts may persist for several years (two to three years) as shrub and herbaceous vegetation reestablishes to near pre-disturbance conditions. Impacts to vegetation from normal ski area operations and maintenance could occur, including preventing the production of seed through ongoing vegetation management with the potential to reduce the availability of food sources for animals or through the introduction of non-native species. Operational impacts, such as skiing and grooming, have the potential to impact vegetation through incidental contact damage. Typically, damage from skiers is minor and usually occurs to shrub and herbaceous vegetation protruding from the snowpack. Damage
from grooming equipment can be more severe, such as, scarring of tree boles adjacent to ski trails. Grooming equipment may not impact shrub or herbaceous vegetation within the ski trail because the snowpack evenly distributes the weight of the equipment over the terrain. However, grooming equipment may compact snow, which lengthens its presence on the site. Extending the period of snow cover has the potential to reduce the growing/reproductive period for some species.

Direct impacts typically have immediate effects in the area of activity and include all of the activities listed above. Direct impacts to vegetation are classified as those impacts that would modify the condition of a vegetated site (i.e., from forest to herbaceous). These impacts would include permanent loss of vegetation, conversion of vegetation communities to another vegetation type, or a short-term loss of vegetation during a temporary construction impact. These impacts relate to the impact analysis for other resource areas. For example, loss or conversion of vegetation communities would directly affect wildlife habitat in the Study Area (section 3.4 – Wildlife refers to impacts displayed in this section to assist in the analysis of impacts to wildlife). Similarly, the loss or conversion of vegetation communities along riparian corridors directly affects the analysis of impacts in section 3.2 – Watershed Resources, where riparian functions are discussed and in section 3.5 – Visual Resources, where the effect of forest removal is discussed in the context of visual effects.

Indirect impacts have delayed or unforeseen effects that occur in the future or in a different location than the original action. Many indirect impacts are also poorly understood given our knowledge and abilities to assess the impact of any project on the surrounding environment. For example, changes to the composition of an herbaceous community as a result of surrounding canopy removal would be considered an indirect impact on that community. Indirect impacts to vegetation would also include future maintenance operations (i.e., mowing/brushing ski trails), areas of soil disturbance that provide opportunity for noxious weed establishment, compaction of soils that limit establishment or health of plants growing in the soil, and utility trenching in existing herbaceous communities. These impacts relate to the impact analysis for other resource areas (e.g., soils) and may be poorly understood given our current knowledge and abilities to assess impacts for any project.

3.3.3.1 Alternative 1

Under Alternative 1, there would be no impacts to the existing vegetation communities within the expansion area, as no new development would occur. Alternative 1 would not result in any direct or impacts to vegetation, although indirect effects from unregulated, off-trail snowmobile access could occur due to the lack of formal trail systems. Areas within the Study Area that are currently relatively free of human visitors would continue to be seldom visited.

3.3.3.2 Alternative 2

Vegetation Communities

Under Alternative 2, there would be approximately 76.1 acres of direct impacts to vegetation communities resulting from tree removal for the construction of the proposed chairlift and seven ski trails
(see Figure EIS-6). For purposes of this vegetation analysis, clearing and grading are considered the same in their impact. Essentially all of the tree removal would be for the construction of the chairlift and ski trails. At upper elevations in the expansion area, the natural characteristic of the terrain is open glades with scattered tree islands or dead standing trees. Where feasible, the proposed ski trails utilize the existing forest openings, which minimize the need for forest clearing to create a skiable trail. Table EIS 3.3-3 presents the results of a GIS analysis regarding impacts by vegetation community for each Action Alternative.

Table EIS 3.3-3: Potential Impacts to Vegetation Communities within the Mount Spokane Study Area

<table>
<thead>
<tr>
<th>Scientific Abbreviation</th>
<th>Common Name</th>
<th>Alt. 2 (acres)</th>
<th>Alt. 3 (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABLA/ATFI</td>
<td>Subalpine fir/Ladyfern</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>ABLA/LUGLH</td>
<td>Subalpine fir/Hitchcock’s smooth woodrush</td>
<td>0.0</td>
<td>0.9</td>
</tr>
<tr>
<td>ABLA/MEFE</td>
<td>Subalpine fir/purple oniongrass</td>
<td>6.3</td>
<td>6.1</td>
</tr>
<tr>
<td>ABLA/TRCA</td>
<td>Subalpine fir/Carolina bugbane</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ABLA/VAME</td>
<td>Subalpine fir/thinleaf huckleberry</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>ABLA/XETE</td>
<td>Subalpine fir/common beargrass</td>
<td>53.2</td>
<td>54.0</td>
</tr>
<tr>
<td>ALVIS/Mesic Forb</td>
<td>Sitka alder/Mesic Forb</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>ALVIS/SETR</td>
<td>Sitka alder/Arrowleaf Groundsel</td>
<td>2.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Developed</td>
<td>Developed</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>ERUMM-FEVI</td>
<td>Sulphur-flower buckwheat-greenleaf fescue</td>
<td>0.3</td>
<td>0.05</td>
</tr>
<tr>
<td>FEVI-FEID</td>
<td>Greenleaf fescue-Idaho fescue</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>TSHE/GYDR</td>
<td>Western hemlock/western oakfern</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>TSHE/MEFE</td>
<td>Western hemlock/rusty menziesia</td>
<td>7.0</td>
<td>6.7</td>
</tr>
<tr>
<td>TSHE/XETE</td>
<td>Western hemlock/common beargrass</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>76.1</td>
<td>74.5</td>
<td></td>
</tr>
</tbody>
</table>

Note: Totals may vary due to rounding (ICF 2013)

The proposed clearing and grading impacts would primarily occur within the subalpine fir community. However, at lower elevations near the proposed bottom terminal of the new chairlift, the impacts would occur in the western hemlock forest type. Following construction activities, Mount Spokane would immediately reseed herbaceous and shrub vegetation cover in cleared ski trails, which would be managed for the life of the ski area (see Table EIS 2-4). Long-term impacts would persist in these modified vegetation communities as long as the area is maintained as a developed ski area. No clearing or grading is proposed within areas defined as talus (see Table EIS 3.3-3); therefore, no direct impacts through clearings and/or to talus areas are anticipated.

Indirect impacts under Alternative 2 to vegetation communities could occur from future maintenance of ski trails and chairlift terminals, similar to methodologies currently used by MS 2000. These impacts would include, but are not limited to, periodic mowing/brushing to maintain ski trails in a modified condition suitable for skiing or hazard tree removal. Mowing/brushing would prevent future forest
regeneration by not allowing saplings to establish during the life of the ski area. It would also slow shrub
development with potential impacts on fruit production and habitat quality. A second potential indirect
impact would be the establishment of noxious weeds. Additional information regarding noxious weeds
can be found under the Noxious Weeds discussion in this section.

Forested Communities

Under Alternative 2, there would be approximately 72.2 acres of direct impacts to forested stands
(excluding developed areas, meadows and alder dominated areas). Additional impacts would include
forest fragmentation, changes in microclimate, and potential introduction of exotic species. These impacts
can extend well into the surrounding forest, causing near- and long-term changes in composition and
function.

Rare Plants

There would be no impact to vascular plants of conservation concern under Alternative 2, as none are
known to exist in the Study Area (see Appendix B).

Noxious Weeds

Under both action alternatives, there is a potential for the spread of noxious weeds within proposed
disturbed areas (i.e., new trail and chairlift clearings).

The initial and ongoing disturbance and human presence required to implement and maintain the
proposed ski area expansion has the ability to introduce noxious weeds and other exotic species into the
Study Area. These species have the highest probability of establishing around the areas where intense soil
disturbance, such as grading or digging will occur (Siegel and Donaldson 2010). These areas include the
chairlift terminals, chairlift tower locations, and constructed ski trails. Possible construction-related
vectors for introduction of weed, seed or propagative material into the Study Area includes any required
heavy machinery, work crews, and project access vehicles.

Alternative 3

Vegetation Communities

Direct impacts to vegetation communities under Alternative 3 would be essentially the same as
Alternative 2. Under Alternative 3, there would be approximately 74.5 acres of direct impacts to
vegetation communities resulting from tree removal for the construction of the proposed chairlift and
seven ski trails. This equates to approximately 1.6 acres less vegetation alteration when compared to
Alternative 2 (see Figure EIS-7).

Forested Communities

Under Alternative 3, there would be approximately 73.4 acres of direct impacts to forested stands.
Alternative 3 realigns Trail 1 to avoid direct impacts to a wetland located to the southeast portion of the
Study Area, resulting in the elimination of impacts in the Sitka alder/Arrowleaf Groundsel vegetation
community. Additional impacts would include forest fragmentation, changes in microclimate, and
potential introduction of exotic species. These impacts can extend well into the surrounding forest, causing near- and long-term changes in composition and function.

Rare Plants

Effects to Rare Plants would be as described under Alternative 2.

Noxious Weeds

Effects to Noxious Weeds would be as described under Alternative 2.

3.3.4 Mitigation Measures

Potential direct and indirect effects of the action alternatives would be decreased through implementation of the BMPs and Mitigation Measures described in Table EIS 2-4 and through project specific operational plans (e.g., vegetation management plan, SWPPP).

3.3.5 Cumulative Effects

Cumulative impacts are the effects that may result from the incremental impact of an action when added to other past, present, and reasonably foreseeable future actions. Generally, an impact can be considered cumulative if: a) effects of several actions occur in the same locale; b) effects on a particular resource are similar in nature; and c) effects are long-term in nature. Potential areas where cumulative impacts might occur to vegetation resources as a result of the construction and operation of new ski area facilities are discussed below.

Ecological systems are complex; therefore, only a basic understanding exists of what the potential cumulative effects to the vegetation in the Study Area will be should Alternative 2 or 3 be implemented. That said, within the 279-acre Study Area, the implementation of either of the action alternatives described in Chapter 2 would contribute to a long-term loss of vegetation, and the likelihood that the residual vegetation composition, structure, and function will be altered. Approximately 75.8 acres of vegetation at the site scale (see Table EIS 3.3-3) would directly experience the cumulative loss of vegetation with the implementation of Alternative 2. Similarly, approximately 74.2 acres of vegetation would directly experience a cumulative loss under Alternative 3. Neither of the action alternatives nor the other cumulative effects projects (i.e., the 2010 Master Facility Plan) are expected to eliminate plant communities at the site scale. However, some communities would be greatly reduced in size and function in the near-term and be subject to longer-term impacts associated with vegetation community changes and ski area maintenance practices. Over the long-term, some communities may be at risk of a continued degradation within the Study Area. Implementation of either of the action alternatives would contribute to a cumulative loss of vegetation at the watershed scale.

Potential cumulative impacts to vegetation include alterations in snowpack and snowmelt due to a change in vegetation communities present in developed ski terrain, with corresponding alterations on the vegetation growing season due to increased sunlight and longer snow retention.
3.4 WILDLIFE

3.4.1 Introduction

This section describes the existing wildlife and wildlife habitat as well as the expected short-term and long-term impacts of the project alternatives within the Mount Spokane Study Area. Documents frequently used as references during this analysis include: Habitat Elements and Life Stage Matrix for Wildlife Species of Interest in Mount Spokane State Park (Romain-Bondi et al. 2009), Biological Surveys Conducted in the SEIS Analysis Area at Mt. Spokane State Park During 2010 (Appendix B), Recreational and Trail Impacts on Wildlife Species of Interest in Mount Spokane State Park (see Section II, Appendix 3) and Draft Habitat Management Plan Mount Spokane Ski and Snowboard Park Proposed Expansion Area (Appendix E), among others. Many of the references cited in this section are provided in full in Appendix E, section 9.0 – References. The emphasis of this chapter will pertain to the identified twenty-one focal wildlife species further described below.

For purposes of this analysis, the Study Area is defined as the 279-acre expansion area. The adjoining areas are described for the more regional setting, to place the Mount Spokane Study Area in context with the surrounding conditions, and to adequately describe wide-ranging species such as elk, deer, moose, and black bear. Information on wildlife was derived from background literature, color aerial photographs, and discussions with state resource agencies including the Washington State Department of Fish and Wildlife (WDFW). Additionally, biologists performed field surveys over several years to document the occurrence of special status wildlife species (e.g., northern goshawk) or their habitats, including state or federally listed species.

Mount Spokane State Park is home to a diversity of wildlife species. Cougar, coyote, deer, moose, elk, black bear, western toads, small mammals, bats, butterflies, and a diversity of bird species are all occupants of Mount Spokane State Park and seen by visitors and park staff. Birds of Mount Spokane State Park compiled by Ron Dexter in 2003 identified 110 species within the Park (http://www.mountspokane.org/images/MtSpBirds.jpg). Seventy-eight of these species were confirmed as breeders within the Park, with an additional 17 species listed as possible breeders. This section describes the affected environment and environmental consequences relative to wildlife resources associated with the proposed project within the Study Area.
This section focuses on wildlife habitat associations, the likelihood that specific wildlife species occur within the Mount Spokane Study Area, and specific habitat types that are used by these wildlife species. In addition, a discussion of habitat connectivity within the context of the Mount Spokane Study Area is also presented. Vegetation communities, described in detail in section 3.3 – Vegetation, are the basis for the descriptions of wildlife habitat in this section.

The Environmental Consequences portion of this wildlife section contains analysis of the potential impacts to wildlife species that may occur within the Mount Spokane Study Area. In brief, short-term adverse effects to wildlife resulting from construction activities, such as avoidance of the Mount Spokane Study Area, were identified for most species as construction equipment introduces noise and activity into their habitat resulting in short-term displacement of these species.

The 279-acre Mount Spokane Study Area is comprised of a mosaic of wildlife habitats. Elevations within the Study Area range from approximately 4,420 feet to approximately 5,850 feet. Existing wildlife habitat conditions within the Mount Spokane Study Area have been influenced by past natural and human-caused modifications, including timber harvest, wildfires, road construction, ski area development, and other recreational activities (e.g., horseback riding, snowmobiling).

3.4.2 Affected Environment

In consultation with WDFW, State Parks prioritized twenty-one focal wildlife species, which potentially occur at Mount Spokane State Park (Ferguson 2007; Table EIS 3.4-1). These include game and non-game species, state and federal listed species, and state priority species from a wide range of taxa. These species may use a variety of habitats including mature/old-growth forests, talus slopes, recent burns, meadows, and alpine/subalpine, riparian and aquatic habitats, as well as others. A detailed description of each of the twenty-one focal species, their potential distribution in Mount Spokane State Park, and important habitat elements and their associated life-stage relationship for each focal species can be reviewed in Habitat Elements and Life Stage Matrix for Wildlife Species of Interest in Mount Spokane State Park (Romain-Bondi et al. 2009). Additionally, the 2010 Master Facilities Plan FEIS considered potential impacts due to recreational activities to the twenty-one focal species in Section II, Appendix 3 – Recreational and Trail Impacts on Wildlife Species of Interest in Mount Spokane State Park.

Key habitat attributes for each of the twenty-one focal species are described in this section, based upon extensive literature review and interviews with local wildlife experts. Selected habitat elements for each species, refined using additional literature searches as needed, were cross referenced with habitat data collected by Morrison and Wooten (2010) from within the potential expansion area to model and estimate the extent of suitable habitat present for each species. The results of this analysis follow.
Table EIS 3.4-1: Conservation Status of the Twenty-one Focal Species Identified for Mount Spokane State Park

<table>
<thead>
<tr>
<th>Species</th>
<th>Scientific Name</th>
<th>WDFW Status</th>
<th>Federal Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARNIVORES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Gray wolf</td>
<td>Canis lupus</td>
<td>State Endangered; Priority Species</td>
<td>None</td>
</tr>
<tr>
<td>2 Canada lynx</td>
<td>Lynx canadensis</td>
<td>State Threatened; Priority Species</td>
<td>Federal Threatened</td>
</tr>
<tr>
<td>3 Wolverine</td>
<td>Gulo gulo</td>
<td>State Candidate; Priority Species</td>
<td>Federal Candidate Species</td>
</tr>
<tr>
<td>4 American marten</td>
<td>Martes americana</td>
<td>Game Species – Furbearer; Priority Species</td>
<td>None</td>
</tr>
<tr>
<td>UNGULATES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Rocky Mountain elk</td>
<td>Cervus elaphus</td>
<td>Game Species; Priority Species</td>
<td>None</td>
</tr>
<tr>
<td>6 White-tailed deer</td>
<td>Odocoileus virginianus ochrourus</td>
<td>Game Species; Priority Species</td>
<td>None</td>
</tr>
<tr>
<td>7 Moose</td>
<td>Alces alces</td>
<td>Game Species; Priority Species</td>
<td>None</td>
</tr>
<tr>
<td>BIRDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Northern goshawk</td>
<td>Accipiter gentilis</td>
<td>State Candidate; Priority Species</td>
<td>Federal Species of Concern</td>
</tr>
<tr>
<td>9 Boreal owl</td>
<td>Aegolius funereus richardoni</td>
<td>State Monitor</td>
<td>None</td>
</tr>
<tr>
<td>10 Pileated woodpecker</td>
<td>Dryocopus pileatus</td>
<td>State Candidate; Priority Species</td>
<td>None</td>
</tr>
<tr>
<td>11 Black-backed woodpecker</td>
<td>Picoides arcticus</td>
<td>State Candidate; Priority Species</td>
<td>None</td>
</tr>
<tr>
<td>12 Dusky grouse</td>
<td>Dendragapus obscurus pallidus</td>
<td>Game Species; Priority Species</td>
<td>None</td>
</tr>
<tr>
<td>13 Brown creeper</td>
<td>Certhia americana</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>14 Pacific (winter) wren</td>
<td>Troglydytes troglodytes</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>15 Olive-sided flycatcher</td>
<td>Contopus cooperi</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SMALL MAMMALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Pika</td>
<td>Ochotona princeps</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>17 Pygmy shrew</td>
<td>Sorex hoyi</td>
<td>State Monitor</td>
<td>None</td>
</tr>
<tr>
<td>18 Silver-haired bat</td>
<td>Lasionycteris noctivagans</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>19 Hoary bat</td>
<td>Lasiurus cinereus</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>OTHER SPECIES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Western toad</td>
<td>Bufo boreas</td>
<td>State Candidate; Priority Species</td>
<td>Federal Species of Concern</td>
</tr>
<tr>
<td>21 Compton tortoiseshell butterfly</td>
<td>Nymphalis vaualbum</td>
<td>State Monitor</td>
<td>None</td>
</tr>
</tbody>
</table>

Sources: USFWS 2013; WDFW 2008; WDFW 2013a
The habitat requirements, ecology, potential to occur within the Mount Spokane Study Area, and nature of occurrence for the twenty-one focal wildlife species listed above, is further described below in Table EIS 3.4-2. This table also provides estimates of suitable habitat available in the expansion area for these species.

Where existing quantitative habitat models were available for a species, a habitat suitability index (HSI) value of 0.5 (i.e., the transition between low and moderate habitat suitability) was chosen as the threshold used to screen habitat element variables for species suitability. HSI values fall within a range of 0 (no habitat value for a species) to 1 (optimal habitat value for a species). Habitat elements with an HIS value of 0.5 or higher were assumed to provide adequate suitability for species use. When quantitative models were lacking, word models provided by Romain-Bondi et al. (2009) were used to evaluate habitat elements for suitability. Additional information on many of these species is also available from WDFW in their series, Management Recommendations for Washington’s Priority Species (Rodrick and Milner 1991, Larsen 1997, and Larsen et al. 2004), which summarizes habitat requirements, limiting factors and management recommendations for priority species. Maps depicting the distribution of modeled suitable habitat for each species in the expansion area are provided in Appendix E.
Table EIS 3.4-2:
Suitable Habitat Estimates for the Twenty-one Focal Species in the 279-acre Expansion Area

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat Associations</th>
<th>Potential Species Presence</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
</tr>
</thead>
</table>
| **Canada lynx**
(Lynx canadensis) | Northern boreal forests and closed canopy montane forests. Requires early-successional forest for primary prey (snowshoe hare) and late-successional forest for denning (Rodrick and Milner 1991, Ruediger et al. 2000). Forest types considered to be primary habitat are lodgepole pine and subalpine fir. | Multiple sightings documented for Mount Spokane State Park between 1988 and 2002; but none in the expansion area. Forest conditions within the park provide adequate habitat for denning, foraging and dispersal. However, no evidence of denning has been documented (Romain-Bondi et al. 2009). | Breeding/denning:
Forest stands with tree canopy closure ≥40% and coarse woody debris ≥15%.
Summer foraging:
Forest and shrub stands with shrub cover >10%.
Winter foraging:
Forest stands with ≤30% slope and shrub cover ≥20%.
Dispersal:
All forest and shrub stands, plus any herbaceous/nonvegetated cover types <300’ from forest or shrub stands.
Source: Romain-Bondi et al. 2009; Morrison et al. 2007 | 0
260
83
275 |
| **Gray wolf**
(Canis lupis) | Vast areas of remote, undisturbed habitat; isolation from human disturbance for denning (Paradiso and Nowak 1982). | Development, such as highways, trails, campgrounds and the ski area, have reduced the extent of undisturbed habitat in Mount Spokane State Park. Gray wolves may occur as lone individuals that use the park for dispersal and foraging habitat. No verified sightings have been documented. Gray wolves are not currently known to use the park for breeding, denning or pack establishment (Romain-Bondi et al. 2009). | Summer foraging:
Deer, elk and moose habitat ≥0.25 mile from the Summit Road and Kit Carson Trail.
Winter foraging:
Deer, elk and moose habitat <3500’ in elevation.
Source: Romain-Bondi et al. 2009 | 138
0 |
| **Wolverine**
(Gulo gulo) | High elevation alpine tundra, subalpine forest, and montane forest (Banci 1994; Copeland et al. 2007). | Multiple sightings documented for Mount Spokane State Park. Foraging and dispersal habitat is present within the park, but conditions are unsuitable for denning (Romain-Bondi et al. 2009). | Summer foraging:
Any habitats >5000’ in elevation.
Winter foraging:
Any habitats >3500’ in elevation.
Source: Romain-Bondi et al. 2009 | 191
279 |
Table EIS 3.4-2:
Suitable Habitat Estimates for the Twenty-one Focal Species in the 279-acre Expansion Area

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat Associations</th>
<th>Potential Species Presence</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
</tr>
</thead>
</table>
| American marten (*Martes americana*) | Boreal coniferous forests, as well as mixed coniferous and deciduous habitats (Rodrick and Milner 1991, Thompson and Harestad 1994). Strongly associated with older forests and coarse woody debris | A regular occupant of Mount Spokane State Park. Existing forest structures likely provides denning, foraging and security habitat (Romain-Bondi et al. 2009). | Non-winter cover and foraging: All habitats except developed.
Winter cover and foraging:
- Forest stands with tree canopy cover >37% and either a) 8 largest trees/ac >19” dbh; b) more than 4 snags/ac with a quadratic mean diameter >12”; or c) coarse woody debris between 20% and 50%.
- Non-forest areas <165’ from suitable forest stands.
Source: Romain-Bondi et al. 2009; Allen 1982; Morrison et al. 2007 | 277 | 140 |
| Rocky Mountain elk (*Cervus elaphus*) | Coniferous forests associated with mountains, foothills, or canyon rangelands (Rodrick and Milner 1991, Skovlin et al. 2002). Prefer a mosaic of forested and open habitat patches to meet cover and foraging needs. | Year-round, regular concentrations in Mount Spokane State Park. Suitable habitats for breeding, calving, and foraging are known to be present (Romain-Bondi et al. 2009). Use of the expansion area during the winter months is limited due to high snow depths and a general lack of available forage. | Cover:
- Forest stands >0.25 mile from Summit Road and tree canopy cover >50%.
Summer/fall foraging:
- Any habitat (5000’ in elevation, <60% slope or >200’ from the Summit Road] with tree canopy cover <40% and within 900’ of elk cover.
Winter foraging:
- Habitats <3500’ in elevation.
Source: Romain-Bondi et al. 2009 | 74 | 2.2 |
Table EIS 3.4-2: Suitable Habitat Estimates for the Twenty-one Focal Species in the 279-acre Expansion Area

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat Associations</th>
<th>Potential Species Presence</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>White-tailed deer Odocoileus virginianus ochrourus</td>
<td>Forested and open habitats, feeding on grasses, forbs, and shrubby browse (Rodrick and Milner 1991, NatureServe 2013).</td>
<td>Year-round, regular concentrations in Mount Spokane State Park. Suitable habitats for breeding, fawning and foraging are known to be present (Romain-Bondi et al. 2009). Use of the expansion area during the winter months is limited due to high snow depths and a general lack of available forage. Documented within the expansion area (see Figure 6, section 6.0).</td>
<td>Summer/fall foraging: Any habitat with herbaceous cover >15% or shrub cover >22%. Summer/fall cover: Forest stands with canopy cover >50%, or Any habitat with shrub/sapling tree cover >52%. Winter foraging/cover: Habitats <3000’ in elevation. Source: Romain-Bondi et al. 2009; Kieffer et al. 1999</td>
<td>276, 172, 0</td>
</tr>
<tr>
<td>Moose Alces alces</td>
<td>Boreal forest and wetland habitats (Rodrick and Milner 1991).</td>
<td>Year-round occupant of Mount Spokane State Park, with forests and wetlands providing breeding, calving and foraging habitat. Use of the expansion area during the winter months is limited due to high snow depths and a general lack of available forage.</td>
<td>Breeding/calving: Forest and shrub stands with gentle slopes (0–10%) and southerly exposures Summer/fall foraging: Forest and shrub stands with slopes <50% and shrub cover between 5% and 95%. Summer cover: Forest stands with canopy cover >70% and canopy height > 33” Winter foraging/cover: Snow depths <35” Source: Romain-Bondi et al. 2009</td>
<td>0, 274, 42, 0</td>
</tr>
</tbody>
</table>
Table EIS 3.4-2: Suitable Habitat Estimates for the Twenty-one Focal Species in the 279-acre Expansion Area

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat Associations</th>
<th>Potential Species Presence</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern goshawk (Accipiter gentiles)</td>
<td>Montane and boreal forests (Desimone and Hays 2003). Forages in the open understory of dense forests and within small forest openings. Nesting occurs in large intact blocks of mature and late successional conifer forest where prey densities are high.</td>
<td>Year-round residents of Mount Spokane State Park (Romain-Bondi et al. 2009). Several primary and alternate nest sites have been documented in the Park. No evidence of goshawk nesting was detected in the expansion area or an adjacent buffer by ICF in 2013 (see section 6.1).</td>
<td>Breeding/nesting: Forest stands with slopes <40%, tree canopy cover >70%, 8 largest trees/ac >19” dbh, and avg tree height >65’. Foraging: Forest stands with slopes <70%, tree canopy cover >32%, and avg tree height >65’, or Nonforest stands <4 acres interspersed with suitable forest. Source: Romain-Bondi et al. 2009; Morrison et al. 2007</td>
<td>44, 93</td>
</tr>
</tbody>
</table>
Table EIS 3.4-2:
Suitable Habitat Estimates for the Twenty-one Focal Species in the 279-acre Expansion Area

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat Associations</th>
<th>Potential Species Presence</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pileated woodpecker (Dryocopus pileatus)</td>
<td>Prefer tall, closed-canopy, coniferous forests containing large snags, large decaying live trees and abundant downed woody debris (Lewis and Azerrad 2003).</td>
<td>Utilizes large diameter trees and snags as preferred habitat for nesting and foraging (Romain-Bondi et al. 2009). Documented within Mount Spokane State Park and the expansion area (see Figure 6, section 6.0). No evidence of foraging by pileated woodpeckers was observed above 4,808’ elevation in the expansion area.</td>
<td>Breeding/nesting: Forest stands with tree canopy cover >50%, and 8 largest trees/ac >20”dbh. Foraging: Forest stands with tree canopy cover >50%, and quadratic mean diameter of snags >9.8” or cover of coarse woody debris >10%. Roosting: Forest stands with tree canopy cover >50%, and 8 largest trees/ac >16” dbh.</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Source: Romain-Bondi et al. 2009; Schroeder 1983; Lewis and Azerrad 2003</td>
<td>178</td>
</tr>
<tr>
<td>Black-backed woodpecker (Picoides arcticus)</td>
<td>Coniferous forests-habitat specialists associated with recent fires or large scale natural disturbances that create abundant standing snags dead for five years or less (Hutto 1995, Saab et al. 2002). Often associated with lodgepole pine forests (Altman 2000)</td>
<td>Potentially breeds and forages in Mount Spokane State Park (Romain-Bondi et al. 2009).</td>
<td>Breeding/nesting: Forest stands with quadratic mean diameter of snags >10”, or # snags/ac >30. Foraging/roosting: Forest stands with # snags/ac >26.</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Source: Romain-Bondi et al. 2009</td>
<td>264</td>
</tr>
</tbody>
</table>
Table EIS 3.4-2:
Suitable Habitat Estimates for the Twenty-one Focal Species in the 279-acre Expansion Area

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat Associations</th>
<th>Potential Species Presence</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dusky grouse (Dendragapus obscurus pallidus)</td>
<td>Inter-mountain coniferous forests mixed with deciduous trees and shrubs, as well as sagebrush-grassland areas (Ware 1998). Prefer open brushy habitat during the spring and summer, and high elevation conifer forests in winter. Aspen stands provide important food and cover</td>
<td>Mount Spokane State Park provides potential breeding and foraging habitat (Romain-Bondi et al. 2009). Documented within the expansion area (see Figure 6, section 6.0).</td>
<td>Breeding/nesting: Any habitat with tree canopy cover between 10 and 65%, and shrub cover between 5% and 53% or herbaceous cover between 20% and 80%. Summer foraging: Any habitat with shrub cover between 5% and 53% or herbaceous cover between 20% and 80%. Winter foraging and roosting: Dense conifer forest (assume tree canopy cover >50%). Source: Romain-Bondi et al. 2009; Schroeder 1984.</td>
<td>196</td>
</tr>
<tr>
<td>Brown creeper (Certhia americana)</td>
<td>Prefer closed canopy forests with abundant large dead/dying trees for nesting and large live trees for foraging. Are significantly more common in old forests with multi-layered structure (Adams and Morrison 1993; Johnson and O’Neil 2001).</td>
<td>Mount Spokane State Park provides potential breeding and foraging habitat (Romain-Bondi et al. 2009). Documented within the expansion area (see Figure 6, section 6.0).</td>
<td>Breeding/nesting/foraging: Forest stands with [quadratic mean diameter of trees >7.5" or quadratic mean diameter of snags >7.5"], or 8 largest trees/ac >20” dbh. Source: Romain-Bondi et al. 2009</td>
<td>264</td>
</tr>
<tr>
<td>Pacific (winter) wren (Troglodytes troglodytes)</td>
<td>Prefer dense tangles and thickets in coniferous and mixed forests. Coarse woody debris and shrub cover are key habitat elements associated with nesting and foraging. Breeding territories, nests, and foraging areas frequently are associated with streams, bogs, swamps and lakes (Romain-Bondi et al. 2009).</td>
<td>Mount Spokane State Park provides potential breeding and foraging habitat (Romain-Bondi et al. 2009). Documented within the expansion area (see Figure 6, section 6.0).</td>
<td>Breeding/nesting/summer foraging: Forest stands with tree canopy cover >35% and cover of coarse woody debris >7.5%, or Any habitat within 25’ of a stream. Source: Romain-Bondi et al. 2009; Gould et al. 1999</td>
<td>187</td>
</tr>
</tbody>
</table>
Table EIS 3.4-2:
Suitable Habitat Estimates for the Twenty-one Focal Species in the 279-acre Expansion Area

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat Associations</th>
<th>Potential Species Presence</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olive-sided flycatcher (Contopus cooperi)</td>
<td>Highly associated with coniferous forest stands throughout North America (NatureServe 2013). Breeds in higher elevation forests and woodlands, especially burned areas with standing dead trees. Their primary needs including perching posts (snags and live trees), adjacent to open air foraging, and conifer forest edges for breeding (Altman and Sallabanks 2000).</td>
<td>Mount Spokane State Park provides potential breeding and foraging habitat (Romain-Bondi et al. 2009). Documented within the expansion area (see Figure 6, section 6.0).</td>
<td>Breeding/nesting: Forest stands with tree canopy cover <50%, and a tree density between 25 and 53 trees per acre or snag density between 6 and 17 trees per acre. Source: Romain-Bondi et al. 2009; Vesley et al. 2007</td>
<td>12</td>
</tr>
</tbody>
</table>
Table EIS 3.4-2:
Suitable Habitat Estimates for the Twenty-one Focal Species in the 279-acre Expansion Area

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat Associations</th>
<th>Potential Species Presence</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
</tr>
</thead>
</table>
| Hoary bat (Lasiurus cinereus) | Foliage roosters (roosting on branches of trees) documented to use a variety of conifer and riparian habitats. Forage within meadows, forest edges, forest openings and roads (Romain-Bondi et al. 2009). | Summer resident known to forage and roost, but not breed, in and around Mount Spokane State Park (Romain-Bondi et al. 2009). Thought to migrate out of the Columbia Basin in September and return in July (a three-month residency) (Shump and Shump 1982). | Foraging/roosting:
All habitats except developed.
Source: Romain-Bondi et al. 2009 | 277 |
| Western toad (Bufo boreas) | Breeds in shallow ponds and lake margins. Forages in a wide variety of upland habitats after breeding is complete. Winters in burrows or under logs and rocks. | A regular occupant of Mount Spokane State Park that hibernates for 3 to 6 months during winter (Wind and Dupuis 2002). | Breeding/metamorphosis:
Warm, shallow water bodies.
Foraging/migration:
Stream corridors, and forest stands with <75% tree canopy cover, that lie within 3280’ of breeding ponds.
Source: Romain-Bondi et al. 2009 | 0 |
| Compton’s tortoiseshell butterfly (Nymphalis vaalbaltum) | Prefers coniferous and deciduous forests. Lays its eggs on the leaves of birch, willow and poplar trees. Forages in open habitats such as meadows, forest openings and riparian areas. | Thought to occur within Mount Spokane State Park. One documented sighting from Mount Spokane near the expansion area. | Breeding/metamorphosis:
Habitats containing willow, birch or aspen.
Foraging:
All habitats, except talus, with tree canopy closure <30%, or
All habitats within 30 m of streams.
Source: Romain-Bondi et al. 2009 | 109 |

In addition to the twenty-one focal species, a variety of other terrestrial and aquatic species also occur in the area. WDFW databases indicate that six streams within or adjacent to the boundaries of Mount Spokane State Park have rainbow trout present. The habitat surveys used for the development of Appendix B were conducted over three field sessions from June 27 to August 30, 2010. Additionally, four field surveys were performed over the summer of 2013 during the development of Appendix E. At that time, no trout were observed within the Study Area; therefore, no trout species have been included in the list of focal wildlife species for this analysis.

In addition, researchers from the Conservation Biology Center in Spokane have performed independent surveys near the summit of Mount Spokane, identifying a population of flightless, ice crawlers (Grylloblatta spp.). This species of insect is found at high elevations in the Rocky Mountains (from WA, ID, MT, WY, BC and AB). Grylloblattids are a poorly known group of insects restricted to cold and extreme habitats. Little is known about their life history biology, and behavior. Grylloblattids are found only in Japan, Siberia, the northwestern United States, and western Canada. There are 26 species known worldwide; the ten North American species are restricted to mountains in Montana, California, Oregon, Washington, and western Canada (http://www.entm.purdue.edu/ants/ice-crawlers.php). At this time this species is not a state or federally listed species of concern.

3.4.3 Environmental Consequences

The physical actions associated with the action alternatives would result in impacts to wildlife and/or wildlife habitat and are referred to as impact mechanisms. Impacts can be classified and discussed in many different ways. For the purposes of this Final EIS, impacts to wildlife will be discussed in terms of direct versus indirect and short-term versus long-term as defined below. Activities leading to direct and indirect impacts to wildlife, wildlife habitat, and wildlife habitat connectivity include the following:

Direct Impacts

Implementation of the action alternatives would result in direct impacts, both long-term and short-term, to wildlife and wildlife habitat. These impacts include permanent and temporary habitat loss, conversion of habitat from one type to another, habitat fragmentation, and disturbance to wildlife. Direct impacts to wildlife or wildlife habitat could result from the following proposed actions:

- Chairlift terminal construction and tower placement
- Clearing with grading for chairlifts and ski trails
- Clearing without grading for chairlifts and ski trails
- Utility line installation
- Routine annual maintenance
- Increased human activity and presence
Indirect Impacts

Indirect impacts to wildlife and wildlife habitat potentially occurring as a result of implementation of the action alternatives include a potential decrease in large mature trees, a shift from late-successional to early-successional species, a decrease in the number of snags and dead or broken-topped trees, and a change in the species composition of native plant communities in the Mount Spokane Study Area due to potential introduction of non-native plant species. Project components potentially causing these types of impacts include:

- Clearing with grading for the chairlift and ski trails
- Clearing without grading for the chairlift and ski trails
- Utility line installation
- Routine annual maintenance
- Increased human activity and presence
- Edge effects/habitat fragmentation

Short and long-term impacts to wildlife and wildlife habitat include the following:

Short-term Impacts

Short-term, or construction, impacts include temporary habitat loss resulting from ground disturbing activities in areas, which would subsequently be allowed to revegetate. Short-term impacts would also include temporary noise disturbance from construction activities. All previously listed activities have the potential to cause temporary noise disturbance. Project components potentially resulting in short-term impacts to wildlife habitat include:

- Vegetation disturbance in buffer areas of chairlift construction
- Clearing with grading for the chairlift and ski trails within areas containing modified herbaceous habitat
- Clearing without grading for the chairlift and ski trails within areas containing modified herbaceous habitat
- Utility line installation

Long-term Impacts

Long-term impacts include: 1) the permanent loss or conversion of wildlife habitat and 2) fragmentation of wildlife habitat resulting in decreased connectivity and a decrease in travel habitat effectiveness. Long-term impacts on wildlife or wildlife habitat would result from the following proposed actions:

- Chairlift terminal construction and tower placement
- Clearing with grading for the chairlift and ski trails
Clearing without grading for chairlift and ski trails

Utility line installation

Routine annual maintenance, such as vegetation mowing or brushing for chairlift and trail maintenance, and occasional felling of hazard trees

Snow compaction from grooming

Increased human activity and presence

Long-term impacts may also include habitat fragmentation (by vegetation removal) and noise disturbance due to the operation of the facilities and/or short-term impacts caused by the noise disturbance generated by the construction of the chairlifts and actual removal of vegetation. Loss of wildlife habitat, due to forest and vegetation removal, will likely cause: 1) breeding/rearing disturbance; 2) displacement/avoidance by wildlife; 3) snag/coarse woody debris reduction; and 4) habitat fragmentation/edge effects. These potential long-term impacts were summarized in the 2010 Master Facilities Plan FEIS and are further defined below:

Stress/physiological response – Studies of heart rates and fecal glucocorticoid levels have shown stress responses to human activity. Chronic stress can make species susceptible to illness and reduce individual fitness (Sapolsky 1992 in Creel et al. 2002).

Breeding/rearing disturbance – Species that are considered generally tolerant of human activity may experience higher levels of disturbance at breeding and rearing sites. This change may result in reduced attentiveness to young, disruption of feeding patterns, abandonment of nests/dens, and/or cause adults to undertake additional risks to their young by moving them to a new location.

Displacement/avoidance – A variety of species often move away from human activity or intentionally avoid associated sites. Sites may be avoided due to the disruption caused by human presence or habitat changes associated with the site (e.g., soil compaction, dryness of soils and vegetation along roadsides and trails). Animals displaced by recreation are less likely to survive and reproduce where habitat is unfamiliar or inferior (Gutzwiller 1995). Displacement or avoidance is by far the most common response of species found in the literature.

Habitat fragmentation/edge effects – Habitat fragmentation/edge effects are typically associated with timber harvest and/or roads, however, ski trails can have similar, though typically less intense impacts. Forest fragmentation effects on songbirds mainly include nest parasitism and presence of nest predators (such as brown-headed cowbirds) in the trail corridor and adjacent interior forest. It has been noted that predation of songbird nests was greater closer to forested hiking trails. Another study found bird composition and abundance of songbirds was altered adjacent to trails.
Predator/competitor increased accessibility – Ski trails can greatly ease travel and access for species less adapted for movement in deep snows. This change may cause greater rates of predation on some species and increased competition for prey for others.

Snag/coarse woody debris reduction – Snags and coarse woody debris are used for cover, nesting and denning, and are key habitat components for some species. These components may be lost through ski trail development, recreational site development and associated removal of hazard trees.

Habituation – Many species will become habituated to human presence. Habituation often poses risks to animals, resulting in undesirable behaviors, poor nutrition, incidental destruction of property, and a host of other factors.

Although recreation is widely recognized as an increasingly important factor affecting wildlife, these impacts have not been fully assessed. For many less studied species, information on recreational impacts is completely lacking. For others, sources consist primarily of anecdotal information in older natural history-oriented studies. Wide-ranging carnivores and ungulates have received the most detailed attention, along with very recent studies addressing recreational impacts on presence, diversity and density for general species groups or habitat types. Even for those species with the greatest information, however, data are often lacking on specific thresholds of disturbance (intensity of use, distance thresholds, temporal effects, etc.).

In addition to a lack of information on wildlife and human interactions, there is conflicting information for various species. Some species may be described in the literature as relatively tolerant of human disturbance in one study, but appear quite sensitive in others.

These gaps and limitations of the available scientific information on wildlife and recreational impacts are important to the understanding and interpretation of this analysis. Specifically, it is important to highlight that the many cases of no or limited information should not be confused with an implication of “no effect.” Where no data exist on some impact types, but an effect on a species seems likely given its biology, habitat use, and/or response of similar species, a discussion on potential effects is included by alternative.

Either of the Action Alternative (Alternatives 2 and 3) would have potential known impacts to wildlife resources, along with unknown impacts; select examples are noted below. Information on wildlife habitats in this section is based on the vegetation communities and forest stand information developed for the Mount Spokane Study Area as described in section 3.2 – Vegetation, Appendix B, Appendix C and Appendix E. Additionally, Tables 5 through 7 from Section II, Appendix 3 have been included in this analysis to provide a summary of potential impacts from recreational disturbance to the twenty-one focal species from the action alternatives (see Table EIS 3.4-3). Where more detailed information is available (e.g., Canada lynx) the discussion has been expanded to inform the analysis. Impacts to wildlife could vary, depending on the impact mechanism and alternative.
3.4.3.1 Alternative 1

Under Alternative 1, there would be no new direct or indirect impacts to the wildlife species within the expansion area as no new development or habitat disturbance would occur.

3.4.3.2 Alternative 2

State and Federal Listed Species

Of the Federal or State listed species, gray wolves and Canada lynx are not currently thought to be established as resident animals in Mount Spokane State Park. However, since both species have potential for resident animals or breeding populations in Mount Spokane State Park in the future, they are assumed to be present and are being evaluated in this document. Gray wolves are thought to occur as lone individuals in and around Mount Spokane State Park, but currently, they are not considered to be a resident pack in the park or the surrounding area (Ferguson 2008).

Canada lynx is also thought to use habitat in or adjacent to Mount Spokane State Park for some part of their life requisite. There have been multiple year-round lynx sightings and tracks in Mount Spokane State Park. Although there has been no evidence of denning, existing forest conditions in the park provide likely adequate habitat for denning, foraging, and dispersal (Romain-Bondi et al. 2009). Sighting information provided by WDFW Wildlife Biologist H. Ferguson (2008) is mainly associated with the western and northwestern edge of the Park (map provided in Romain-Bondi et al. 2009). On March 24, 2000, the contiguous United States population of the Canada lynx was listed as threatened under the Endangered Species Act (ESA) (USFWS 2000). The lynx was classified by WDFW as a threatened species in 1993 (WAC 232-12-011). Regulatory compliance is coordinated through USFWS and WDFW. However, no land within Spokane County has been designated as Canada lynx critical habitat. In addition, the Washington State Recovery Plan for the Lynx (Stinson 2001) estimates that any potential lynx habitat on Mt. Spokane is very limited and isolated.

With the exception of impacts related to developed winter recreational facilities, the effects of recreational activities on lynx populations have not been well studied (Ruggiero et al. 1999). This is primarily due to the number of environmental analyses performed for new ski facilities on federal lands resulting in additional knowledge of the impacts of these facilities on lynx and lynx habitat.

Prediction of recreational effects is based largely on known lynx ecology, preliminary habitat use data from Colorado’s reintroduction effort, ecological concepts, the cautious application of anecdotal accounts (e.g., Roe et al. 2000), and professional judgment. Recognizing the lack of data on lynx and recreational activities, Ruggiero et al. (1999) concluded “limited anecdotal observations do not support the hypotheses that snowmobiling, ski touring, or hiking (i.e., dispersed recreation) result in significant behavioral disturbances to lynx.” However, this statement is unqualified with respect to the intensity of these activities.

With respect to developed recreation effects on lynx (relevant to the action alternatives), Ruediger et al. (2000) indicated “to date, most investigations of lynx have not shown human presence to influence how
lynx use the landscape. Intuitively we assume that some threshold exists where human disturbance becomes so intense that it precludes use of an area by lynx.” “High intensity recreational use, such as that occurring at ski areas, may provide a level of disturbance that effectively precludes lynx use (at least temporarily) of otherwise suitable habitat (Ruggiero et al. 1999).” They go on to state that “lynx may be able to adapt to the presence of regular and concentrated recreational use, so long as critical habitat needs are being met.” Such use by some lynx has been demonstrated at some ski areas and their surrounding areas (e.g., Beaver Creek Resort, Vail Resort, Vail Pass, Copper Mountain Resort, Keystone Resort, Arapahoe Basin, Wolf Creek Ski Area, Durango Mountain Resort, Telluride Ski Resort, and Canadian ski areas; Thompson and Halfpenny 1989, Thompson 2006). The natural activity patterns of lynx (largely nocturnal) versus recreational activities (largely diurnal) provide an opportunity to maintain both uses in the same landscape. A key to providing temporal segregation of use is ensuring that effective diurnal security habitats are present and adequately distributed (Ruggiero et al. 1999). While lynx and ski areas may not be incompatible, the developed ski terrain itself is a small part of their normally used areas. Larger surrounding tracts of undeveloped, effective forest facilitate lynx use of ski areas (Thompson and Halfpenny 1989).

Lynx diurnal security habitat (DSH) includes those areas that provide cover values that are also relatively isolated from, and unaffected by, human developments and activities. These are areas where largely nocturnal and crepuscular lynx can rest during the day without being regularly displaced or harassed by humans or exposed to other risk factors (Ruediger et al. 2000; Shenk 2005). Denning habitat is often used as a surrogate for security habitat, but security habitat is more widespread because it generally includes a greater variety of forest structural stages and aspects, and can include smaller habitat patch sizes and less isolation from risk factors. The structural cover component of security habitat is not as important as that associated with denning. It is likely that most forested habitats that provide adequate cover and diurnal seclusion from human activities, predators, and competitors support potential security habitat. Relatively non-forested habitats can also provide effective diurnal security areas, depending on the level of human activity (Thompson and Halfpenny 1989).

DSH is defined more narrowly as secure winter daytime bedding sites in highly disturbed or heavily used areas such as downhill ski areas and snowmobile play areas (Ruediger et al. 2000). It is assumed that the distribution of viable diurnal security habitat is more important in fragmented landscapes experiencing intense or widespread human activities, whether recreational or not. So long as effective security blocks are present and adequately distributed, and other critical habitat needs are met, lynx may be able to adapt to the presence of regular and concentrated human use during winter and other seasons (Ruediger et al. 2000). Diurnal security habitat allows lynx the ability to retreat from adjacent human disturbances during daytime hours, and emerge at dusk to hunt and travel when most human activity ceases. “Security habitats will generally be sites that naturally discourage winter [or other displacing] human activity because of extensive forest floor structure, or stand conditions that otherwise make human access difficult…Security habitats are likely to be most effective if they are sufficiently large to provide visual and acoustic insulation from winter [and other seasonal] human activity and to easily allow movement away from
infrequent human intrusion (Ruediger et al. 2000).” While, habitat block size, buffering distances, and other variables have not been well-studied or quantified relative to potentially disruptive human activities, a group of federal interagency biologists (known as the Lynx Biology Team) indicated that a 50 meter buffer was required to protect DSH from such human disturbances (Roberts 2009). In the general landscape, effective DSH is most needed to facilitate extended lynx movements beginning in April and ending in September, when lynx are no longer relatively sedentary on winter range subsets and are dispersing to and from mates, respectively (Shenk 2008).

Diurnal security habitat is an issue in the Mount Spokane proposal because it has the potential to affect habitat connectivity across the ski area. The closer that effective security habitat is to developed ski terrain, the closer to that terrain that a lynx could bed during the day, then cross the ski area from dusk through dawn to the next DSH block on the opposite side of developed ski terrain before the ski area reopens. Distances across developed ski terrain that are within a lynx’s daily travel distance (DTD) could allow lynx to completely avoid human interaction. Diurnal security habitat across Mount Spokane would be most limited during the day (e.g., daylight hours when skiers are present, including ski patrol activities (e.g., avalanche hazard reduction, safety sweeps for lost/injured skiers) occurring before and after the ski area has been closed to the public) during the winter ski season (mid-November to mid-April) because of backcountry use of the PASEA, and most available during the rest of the year because of the relative absence of human activity.

Based on the literature available, it is unlikely that the development of either Alternative 2 or 3 would adversely affect the ability of lynx to cross the expansion area. This concern is only relevant during the day and during the winter ski season. During the rest of the year connectivity is less of a concern because of the relative absence of human activity. Furthermore, lynx are less likely to attempt extended movements across the expanded ski area between September and April when they are more sedentary within winter subsets of their overall home range (Shenk 2008). Therefore, under Alternatives 2 and 3, the majority of lynx should still be able to cross the ski area when they are most likely to attempt such movements. Lastly, the travel distance (i.e., approximately 1 mile) across the expansion area under Alternative 2 or 3 would be less than daily movement distances of females (typically up to 3 to 6 miles); therefore, new ski area structures (e.g., lift terminals and towers) would represent inanimate objects that a lynx encountering them would simply walk around (Ruediger et al. 2000). New trails would be crossed theoretically by lynx as they are now in their undisturbed state.

Focal Wildlife Species

Table EIS 3.4-3 summarizes the known potential impacts to the twenty-one focal species under the action alternatives. As discussed above, this summary table was developed for the 2010 Master Facilities Plan FEIS and more detailed discussion about the habitat requirements and impact mechanisms can be found in *Recreation and Trail Impacts on Wildlife Species of Interest in Mount Spokane State Park*, which is included as Section II, Appendix 3.
Table EIS 3.4-3: Potential Impacts to the Twenty-One Focal Species Under Action Alternatives

<table>
<thead>
<tr>
<th>Species</th>
<th>Skiing</th>
<th>Human Presence</th>
<th>Developed Recreation Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnivores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray wolf (Canis lupus)</td>
<td>No information</td>
<td>Direct human disturbance at den and rendezvous sites can cause stress and abandonment (Claar et al. 1999).</td>
<td>Mixed response to trails – both avoidance and attraction. In winter use trails for travel and in summer more likely to avoid (Creel et al. 2002, Whittington et al. 2005).</td>
</tr>
<tr>
<td>Canadian lynx (Lynx canadensis)</td>
<td>High intensity recreation can preclude lynx use of suitable habitat. Lynx may adapt to regular and concentrated recreational use if critical habitat needs are met (Ruggiero et al. 1999). See section 7.3 for further discussion.</td>
<td>Direct human disturbance at den sites can cause stress and abandonment. Otherwise, are generally tolerant of humans (Claar et al. 1999). See section 7.3 for further discussion.</td>
<td>High intensity recreation can preclude lynx use of suitable habitat. Lynx may adapt to regular and concentrated recreational use if critical habitat needs are met (Ruggiero et al. 1999). See section 7.3 for further discussion.</td>
</tr>
<tr>
<td>Wolverine (Gulo gulo)</td>
<td>Groomed trails may allow greater access to winter habitats by predators.</td>
<td>Negative associations of wolverine presence with helicopter and backcountry skiing (Krebs et al. 2007).</td>
<td>Evidence mixed – sometimes avoiding human infrastructure but also have been found near active campgrounds (Claar et al. 1999, Copeland et al. 2007).</td>
</tr>
<tr>
<td>American marten (Martes Americana)</td>
<td>Groomed trails may allow greater access to winter habitats by predators.</td>
<td>No information</td>
<td>No information</td>
</tr>
<tr>
<td>Ungulates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocky mountain elk (Cervus elaphus)</td>
<td>Daily movement away from heavily used x-country ski trails (Ferguson 1982). Flight responses from skiers within 650 meters (Cassirer et al. 1992).</td>
<td>Can be sensitive to human presence, but also may habituate, conserving energy (Thompson and Henderson 1998).</td>
<td>Can be sensitive to human presence around heavily used recreation sites, but also may habituate, conserving energy (Thompson & Henderson 1998).</td>
</tr>
<tr>
<td>White-tailed deer (Odocoileus virginianus ochrourus)</td>
<td>Mule deer responses from skiers involve more running and are of greater duration than for disturbance from snowmobiles (Freddy 1986, Freddy et al. 1986).</td>
<td>Respond to human presence associated with various forms of recreation – show physiological response, displacement and avoidance.</td>
<td>In developed areas, white-tailed deer were found to become increasingly nocturnal and secretive and to use greater cover during the day (Vogel 1983 in Canfield et al. 1999). Ski trails may enhance mobility of deer in snow (Richens and Lavigne 1978 in Boyle and Samson 1985)</td>
</tr>
<tr>
<td>Moose (Alces alces)</td>
<td>Displacement and avoidance of heavily-used cross-country skiers and ski trails (Ferguson and Keith 1982).</td>
<td>Tolerance to humans varies by situation – habitat, social groupings, nutrition, reproductive status, & individual animals. Most effects are discussed in the literature as related to hunting season and summer wildlife watching.</td>
<td>Avoidance of heavily used cross-country ski trails (Ferguson et al. 1982).</td>
</tr>
</tbody>
</table>
Table EIS 3.4-3:
Potential Impacts to the Twenty-One Focal Species Under Action Alternatives

<table>
<thead>
<tr>
<th>Species</th>
<th>Skiing</th>
<th>Human Presence</th>
<th>Developed Recreation Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIRDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern goshawk (Accipiter gentilis)</td>
<td>No specific information, but impact of passing recreationists is likely minimal. To reduce nest site disturbance a spatial buffer of 400–500 meters is recommended (Jones 1979 in Gaines et al. 2003).</td>
<td>No specific information, but impact of passing recreationists is likely minimal. To reduce nest site disturbance a spatial buffer of 400–500 meters is recommended (Jones 1979 in Gaines et al. 2003).</td>
<td>Limited information but there are documented cases of camping near nests leading to nest failure (Speiser 1992 in Squires and Reynolds 1997). Goshawks nest further from human features (habitations and roads) than otherwise expected (Speiser and Bosakowski 1987).</td>
</tr>
<tr>
<td>Boreal owl (Aegolius funereus richardoni)</td>
<td>No specific information, but are considered fairly tolerant of human disturbance (ADFG 1994).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pileated woodpecker (Dryocopus pileatus)</td>
<td>No specific information, but are considered fairly tolerant of human disturbance. Some birds may change roost sites if disturbed and may aggressively defend nest (Bull and Jackson 1995).</td>
<td>No specific information, but are considered fairly tolerant of human disturbance. Some birds may change roost sites if disturbed and may aggressively defend nest (Bull and Jackson 1995).</td>
<td>Ski trail development can result in loss of snags, a key habitat component</td>
</tr>
<tr>
<td>Black-backed woodpecker (Picoides arcticus)</td>
<td>No specific information, but are considered fairly tolerant of human disturbance. May aggressively defend nest (Dixon and Saab 2000).</td>
<td>No specific information, but are considered fairly tolerant of human disturbance. May aggressively defend nest (Dixon and Saab 2000).</td>
<td>Ski trail development can result in loss of snags, a key habitat component</td>
</tr>
<tr>
<td>Dusky grouse (Dendragapus obscurus pallidus)</td>
<td>No specific information. “Increasing recreational inroads into montane areas and urbanization remain a threat to dusky grouse” (Zwickel and Bendell 2005).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown Creeper (Certhia americana)</td>
<td>No information.</td>
<td>No information.</td>
<td>Fragmenting effects of trails can lead to increases in nest predation (Hickman 1990, Miller & Hobbs 2000). Trail construction can result in loss of snags and other important habitat components. No information.</td>
</tr>
<tr>
<td>Pacific (winter) wren (Trogodytes troglodytes)</td>
<td>No specific information but are considered fairly tolerant of human disturbance (Hejl et al. 2002a).</td>
<td>No specific information but are considered fairly tolerant of human disturbance (Hejl et al. 2002a).</td>
<td>Fragmenting effects of trails can lead to increases in nest predation (Hickman 1990, Miller & Hobbs 2000). Trail construction can result in loss of snags and other important habitat components. No information.</td>
</tr>
<tr>
<td>Olive-sided flycatcher (Contopus cooperi)</td>
<td>No specific information but are considered fairly tolerant of human disturbance (Hejl et al. 2002b).</td>
<td>No specific information but are considered fairly tolerant of human disturbance (Hejl et al. 2002b).</td>
<td>Ski trail construction can result in loss of snags and other important habitat components.</td>
</tr>
<tr>
<td>SMALL MAMMALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pika (Ochotona princeps)</td>
<td>Snow compaction from snowmobiles and grooming equipment would disturb use of subnivian environments and could cause mortality.</td>
<td>No effects to summer foraging behavior due to seasonal use of the Study Area.</td>
<td>Snow compaction from snowmobiles and grooming equipment would disturb use of subnivian environments and could cause mortality. Clearing for ski area facilities could result in impacts to</td>
</tr>
</tbody>
</table>
Table EIS 3.4-3:
Potential Impacts to the Twenty-One Focal Species Under Action Alternatives

<table>
<thead>
<tr>
<th>Species</th>
<th>Skiing</th>
<th>Human Presence</th>
<th>Developed Recreation Sites</th>
</tr>
</thead>
</table>
| Pygmy shrew
(Sorex hoyi) | Snow compaction from snowmobiles and grooming equipment would disturb use of subnivian environments and could cause mortality. | No information | Snow compaction from snowmobiles and grooming equipment would disturb use of subnivian environments and could cause mortality. |
| Hoary bat
(Lasturus cinereus) | No information. | No information. | No information. |
| Silver-haired bat
(Lasionycteris noctivagans) | No information. | No information. | No information. |
| **Other Species** | | | |
| Western toad
(Bufo boreas) | No information on specific recreation impacts in literature. However any activity that would lead to more bare ground, has been related to a decline in anuran species (Vinson 1998) | | |
| Compton tortoise-shell butterfly
(Nymphalis vaualbum) | No information on specific recreation impacts in scientific literature. | | |

Source: Mt Spokane SEIS (Washington State Parks and Recreation Commission 2012), as adapted from Section II, Appendix 3

a Suitable habitat for western toad is absent from the expansion area.

Overall, harvest activities where overhead cover and forest floor vegetation are disturbed can potentially impact habitats suitable for subnivian species (e.g., pika). Construction of ski trails and/or winter recreational facilities would also have the potential to compact soil surfaces and possibly create barriers for dispersal for these species. Reduction or elimination of potential habitat, compacted soil and snow surfaces (due to trail grooming and skier use) and potential dispersal barriers are the overall possible outcomes from Alternative 2 and 3. Additional impacts may also include a decline in the abundance of some prey species (small mammals and birds) utilized by subnivian species in an area larger than the area of tree removal, snow compaction, forest fragmentation effects, and groomed area.

For some species, tree removal associated with the action alternatives could be partly beneficial from a long-term, foraging habitat-perspective, since forest openings are expected to support a higher base of some prey species. For example, there is anticipated to be a longer-term, increase in overall insect abundance and biomass due to the increase in light and shrubby habitat at trail edges. However, invertebrates dependent on more closed forest conditions are likely to experience population declines in areas of vegetation conversation and their immediate surroundings.

Habitat Disturbance

Under Alternative 2, there would be approximately 76.1 acres of direct impacts to wildlife habitat resulting from vegetation removal for the construction of the proposed chairlift and seven ski trails (see Figure EIS-6). Forest overstory would be removed and shrubs taller than 18 to 24 inches would be pruned.
within all cleared areas and all understory vegetation would be removed in areas where grading occurs. Woody debris generated from clearing the lift and ski trails will be retained on-site, dispersed by lopping and scattering within trails and trail edges and by corduroy placement of larger trees felled within trails. The majority of the clearing and grading impacts would occur to forested habitats, primarily the subalpine fir communities (see Table EIS 3.4-4). However, at lower elevations near the proposed bottom terminal of the new chairlift, impacts would occur to western hemlock forest type. Impacts to shrub and meadow communities would be approximately 1.2 acres.

In the southern portion of the expansion area, the natural characteristic of the terrain is open glades with scattered tree islands or dead standing trees. Forests in much of the south-central portion of the expansion area consist of open woodlands that have been significantly impacted by blowdown during windstorms, or suffered extensive tree damage from ice storms and/or root rot fungal infection. Where feasible, the proposed ski trails have been designed to utilize these existing gladed areas, minimizing the need for forest clearing to create a skiable trail. Table EIS 3.4-4 shows the impacts by vegetation community and by alternative.

<table>
<thead>
<tr>
<th>Scientific Abbreviation</th>
<th>Common Name</th>
<th>Alt. 2 (acres)</th>
<th>Alt. 3 (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABLA/ATFI</td>
<td>Subalpine fir/Ladyfern</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>ABLA/LUGLH</td>
<td>Subalpine fir/Hitchcock’s smooth woodrush</td>
<td>0.0</td>
<td>0.9</td>
</tr>
<tr>
<td>ABLA/MEFE</td>
<td>Subalpine fir/purple oniongrass</td>
<td>6.3</td>
<td>6.1</td>
</tr>
<tr>
<td>ABLA/TRCA</td>
<td>Subalpine fir/Carolina bugbane</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ABLA/VAME</td>
<td>Subalpine fir/thinleaf huckleberry</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>ABLA/XETE</td>
<td>Subalpine fir/common huckleberry</td>
<td>53.2</td>
<td>54.0</td>
</tr>
<tr>
<td>ALVIS/Mesic Forb</td>
<td>Sitka alder/Mesic Forb</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>ALVIS/SETR</td>
<td>Sitka alder/Arrowleaf Groundsel</td>
<td>2.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Developed</td>
<td>Developed</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>ERUMM-FEVI</td>
<td>Sulphur-flower buckwheat-greenleaf fescue</td>
<td>0.3</td>
<td>0.05</td>
</tr>
<tr>
<td>FEVI-FEID</td>
<td>Greenleaf fescue-Idaho fescue</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>TSHE/GYDR</td>
<td>Western hemlock/western oakfern</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>TSHE/MEFE</td>
<td>Western hemlock/rusty menziesia</td>
<td>7.0</td>
<td>6.7</td>
</tr>
<tr>
<td>TSHE/XETE</td>
<td>Western hemlock/common beargrass</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>76.1</td>
<td>74.5</td>
</tr>
</tbody>
</table>

Note: Totals may vary due to rounding (ICF 2013)

In addition to direct impacts to wildlife and wildlife habitat resulting from clearing and/or grading, edge effects would occur along the borders of proposed trails, resulting in changes in microclimate variables such as solar radiation (Ballere et al. 1996; Teramura and Sullivan 1991), air temperature, and soil moisture (Chen et al. 1990, 1992, and 1995) caused by an opening in the forest canopy. Edge effects can result in unique habitats allowing easy access to adjacent communities supporting a greater diversity of
Section III. Mount Spokane State Park Proposed Ski Area Expansion
Final Environmental Impact Statement

Plants and animals. Conversely, the narrow borders can also act as travel lanes for predators resulting in an increase in predation along the edges. Increased competition for resources (e.g., forage, prey, structure such as snags) may also occur when edge species colonize early successional habitats and forest edges resulting from logging and/or the construction of ski trails (Rosenberg and Raphael 1986). This change has the potential to reduce the viability of adjacent interior forest species when edge species exploit resources important interior forest species or behaviorally exclude access to these resources. These early successional habitats and forest edges may also facilitate the establishment and spread of weedy, invasive species that could degrade habitat for some wildlife. Numerous BMPs and Mitigation Measures are proposed to during both construction and ski area operations to limit the spread of weedy plants (see Table EIS 2-4).

Following construction activities, Mount Spokane would immediately reseed herbaceous and shrub vegetation cover in cleared ski trails, which would be managed for the life of the ski area (see Table EIS 2-4). Long-term impacts would persist in these modified vegetation communities as long as the area is maintained as a developed ski area. There would be no direct impacts to talus areas from clearing and grading. However, snow compaction from grooming equipment and skiing under the action alternatives has the potential to alter subnivian microclimates, increasing risk of mortality to small mammals (discussed above).

Where trees mature together in dense stands, each individual alone may not be able to withstand wind and weather if the surrounding trees are removed. Therefore, if a ski trail is cut through a forested area, additional limited mortality may be expected along trail edges due to wind throw and snow loading.

Night skiing is not part of the action alternatives; therefore, the only potential impact mechanism would be nighttime grooming of the new trails. During the winter ski season, grooming activity would theoretically impair the ability of a lynx to cross through the expansion area. Additionally, compaction from skiing and grooming has the potential to prevent American pika from emerging from subnivean tunnels during warm winter days. Cumulatively, these impacts could alter the distribution and abundance of small mammals and other prey species along the new ski trails.

Forest removal and long-term maintenance of herbaceous-dominated ski trails would benefit some species by providing enhanced feeding opportunities. For example, the combination of grasslands and low shrubs within maintained ski trails would be beneficial to ungulates (e.g., deer, elk, moose) after snow melt by providing high quality foraging habitat in close proximity to cover. Similarly, an increase in insect abundance and biomass is expected due to the increase in light and habitat diversity at ski trail edges. This would be beneficial to birds and other species that feed on insects, such as the olive-sided flycatcher. Flowering plants within maintained ski trails should provide expanded foraging opportunities for adult Compton’s tortoiseshell butterflies.

Table EIS 3.4-5 identifies the effect of Alternative 2 on habitat utilized by the twenty-one focal wildlife species.
Section III. Mount Spokane State Park Proposed Ski Area Expansion
Final Environmental Impact Statement

Table EIS 3.4-5
Change in Suitable Habitat for the Twenty-One Focal Wildlife Species Under Alternative 2

<table>
<thead>
<tr>
<th>Species</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
<th>Estimated Habitat (acres): As Built Conditions</th>
<th>Net Habitat Change (acres)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada lynx (Lynx canadensis)</td>
<td>Breeding/denning: Forest stands with tree canopy closure ≥40% and coarse woody debris ≥15%. Summer foraging: Forest and shrub stands with shrub cover >10%. Winter foraging: Forest stands with ≤30% slope and shrub cover ≥20%. Dispersal: All forest and shrub stands, plus any herbaceous/nonvegetated cover type < 300’ from forest or shrub stands.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>PHS database contains 15 records, dating from 1988 to 2002, within 5 miles of the expansion area. No records from the expansion area. Although adequate habitat is present, denning is not documented in Mount Spokane State Park (Romain-Bondi et al. 2009). Subalpine forest in the expansion area generally lacks large diameter trees characteristic of denning habitat. Deep winter snow pack may reduce habitat suitability for snowshoe hare, the preferred winter prey of lynx. Human activity and disturbance associated with expanded alpine skiing may reduce suitability of winter dispersal and foraging habitat. Lynx are currently exposed to a low level of human disturbance from backcountry skiing.</td>
</tr>
<tr>
<td>Gray wolf (Canis lupis)</td>
<td>Summer foraging: Deer, elk and moose habitat >0.25 mile from the Summit Road and Kit Carson Trail. Winter foraging: Deer, elk and moose habitat < 3500’ in elevation.</td>
<td>138</td>
<td>138</td>
<td>0</td>
<td>Wolf use of Mount Spokane State Park is believed to be limited to dispersal and foraging by lone individuals. High snow depth during winter months precludes use by preferred ungulate prey.</td>
</tr>
</tbody>
</table>
Table EIS 3.4-5: Change in Suitable Habitat for the Twenty-One Focal Wildlife Species Under Alternative 2

<table>
<thead>
<tr>
<th>Species</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
<th>Estimated Habitat (acres): As Built Conditions</th>
<th>Net Habitat Change (acres)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolverine (Gulo gulo)</td>
<td>Summer foraging: Any habitats >5000’ in elevation. Winter foraging: Any habitats >3500’ in elevation. Source: Romain-Bondi et al. 2009</td>
<td>191</td>
<td>191</td>
<td>0</td>
<td>Human activity and disturbance associated with expanded alpine skiing may reduce suitability of high elevation winter foraging habitat. Wolverine are currently exposed to a low level of human disturbance from backcountry skiing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>279</td>
<td>279</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>American marten (Martes americana)</td>
<td>Non-winter cover and foraging: All habitats except developed. Winter cover and foraging: Forest stands with tree canopy cover >37% and either a) 8 largest trees/ac ≥19” dbh; b) more than 4 snags/ac with a quadratic mean diameter ≥12”; or c) coarse woody debris between 20% and 50%. Non-forest areas <165’ from suitable forest stands. Source: Romain-Bondi et al. 2009; Allen 1982; Morrison et al. 2007</td>
<td>277</td>
<td>276</td>
<td>-1</td>
<td>Managed ski trails are expected to provide foraging habitat after snow melt. Snow compaction from skiing and snow grooming could adversely affect the subnivian zone within managed ski trails, reducing winter prey availability. Lop and scatter of woody debris during initial clearing and corduroy placement of felled trees could limit this effect.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140</td>
<td>103</td>
<td>-37</td>
<td></td>
</tr>
<tr>
<td>Rocky Mountain elk (Cervus elaphus)</td>
<td>Cover: Forest stands >0.25 mile from Summit Road and tree canopy cover >50%. Summer/fall foraging: Any habitat [<5000’ in elevation, <60% slope or >200’ from the Summit Road] with tree canopy cover ≤40% and within 900’ of elk cover. Winter foraging: Habitats <3500’ in elevation. Source: Romain-Bondi et al. 2009</td>
<td>74</td>
<td>49</td>
<td>-26</td>
<td>Managed ski trails in close proximity to cover would provide foraging habitat after snow melt. High snow depths preclude use of the expansion area during winter months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2</td>
<td>29</td>
<td>+27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table EIS 3.4-5: Change in Suitable Habitat for the Twenty-One Focal Wildlife Species Under Alternative 2

<table>
<thead>
<tr>
<th>Species</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
<th>Estimated Habitat (acres): As Built Conditions</th>
<th>Net Habitat Change (acres)</th>
<th>Comments</th>
</tr>
</thead>
</table>
| White-tailed deer (Odocoileus virginianus ochrourus) | **Summer/fall foraging:** Any habitat with herbaceous cover >15% or shrub cover >22%.
Summer/fall cover: Forest stands with canopy cover >50%, or Any habitat with shrub/sapling tree cover >52%.
Winter foraging/cover: Habitats <3000’ in elevation.
Source: Romain-Bondi et al. 2009; Kieffer et al. 1999 | 276 | 277 | +1 | Managed ski trails in close proximity to cover would provide foraging habitat after snow melt.
High snow depths preclude use of the expansion area during winter months. |
| Moose (Alces alces) | **Breeding/calving:** Forest and shrub stands with gentle slopes (0–10%) and southerly exposures
Summer/fall foraging: Forest and shrub stands with slopes <50% and shrub cover between 5% and 95%.
Summer cover: Forest stands with canopy cover >70% and canopy height > 33’
Winter foraging/cover: Snow depths <35”
Source: Romain-Bondi et al. 2009 | 0 | 0 | 0 | Steep slopes and northwest exposures not expected to provide breeding/calving habitat.
Managed ski trails in close proximity to cover would provide foraging habitat after snow melt.
High snow depths preclude use of the expansion area during winter months. |
Table EIS 3.4-5:
Change in Suitable Habitat for the Twenty-One Focal Wildlife Species Under Alternative 2

<table>
<thead>
<tr>
<th>Species</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
<th>Estimated Habitat (acres): As Built Conditions</th>
<th>Net Habitat Change (acres)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern goshawk (Accipiter gentiles)</td>
<td>Breeding/nesting: Forest stands with slopes <70%, tree canopy cover >40%, 8 largest trees/ac >19” dbh, and avg tree height >65’. Foraging: Forest stands with slopes <70%, tree canopy cover >32%, and avg tree height >65’, or Nonforest stands <4 acres interspersed with suitable forest. Source: Romain-Bondi et al. 2009; Morrison et al. 2007</td>
<td>44</td>
<td>30</td>
<td>-10</td>
<td>An intensive search survey of potentially suitable nesting habitat in 2013 detected no evidence of goshawk nesting in or within 328’ of the expansion area, nor did two additional follow up acoustic broadcast surveys during the summer of 2014. Forest fragmentation resulting from ski trail construction may reduce suitability of retained tree islands as foraging habitat.</td>
</tr>
<tr>
<td>Boreal owl (Aegolius funereus richardsoni)</td>
<td>Breeding/nesting: Forest stands >4000’ in elevation with combined trees and snags/ac >23, and 8 largest trees/ac >14”dbh. Foraging/roosting: Forest stands >3500’ with tree canopy cover >35%. Source: Romain-Bondi et al. 2009; Heinrich et al. 1999</td>
<td>209</td>
<td>146</td>
<td>-63</td>
<td>Uncommon year-round resident in mountains of northeast Washington. Although considered fairly tolerant of human disturbance, human activity associated with expanded alpine skiing may reduce suitability of subalpine tree islands as winter foraging and roosting habitat. Boreal owl are currently exposed to a low level of human disturbance from backcountry skiing.</td>
</tr>
</tbody>
</table>
Table EIS 3.4-5:
Change in Suitable Habitat for the Twenty-One Focal Wildlife Species Under Alternative 2

<table>
<thead>
<tr>
<th>Species</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
<th>Estimated Habitat (acres): As Built Conditions</th>
<th>Net Habitat Change (acres)</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Pileated woodpecker (Dryocopus pileatus)| Breeding/nesting:
Forest stands with tree canopy cover >50%, and 8 largest trees/ac >20” dbh.
Foraging:
Forest stands with tree canopy cover >50%, and quadratic mean diameter of snags >9.8” or cover of coarse woody debris >10%.
Roosting:
Forest stands with tree canopy cover >50%, and 8 largest trees/ac >16” dbh.
No field evidence of foraging by pileated woodpeckers was observed above 4,808’ in elevation.
Subalpine forest generally lacked large diameter snags required for roosting
High-altitude breeders often move into down-slope forests during winter (BirdWeb 2013). |
| Black-backed woodpecker (Picoides articus)| Breeding/nesting:
Forest stands with quadratic mean diameter of snags >10”, or # snags/ac >30.
Foraging/roosting:
Forest stands with # snags/ac >26.
Source: Romain-Bondi et al. 2009 | 264 | 187 | -77 | Densities of black-backed woodpeckers are expected to be low because snags within high severity tree kill areas are older than the one- to five-year mortality range preferred by this species. |
Table EIS 3.4-5: Change in Suitable Habitat for the Twenty-One Focal Wildlife Species Under Alternative 2

<table>
<thead>
<tr>
<th>Species</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
<th>Estimated Habitat (acres): As Built Conditions</th>
<th>Net Habitat Change (acres)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dusky grouse (Dendragapus obscurus pallidus)</td>
<td>Breeding/nesting: Any habitat with tree canopy cover between 10 and 65%, and shrub cover between 5% and 53% or herbaceous cover between 20% and 80%. Summer foraging: Any habitat with shrub cover between 5% and 53% or herbaceous cover between 20% and 80%. Winter foraging and roosting: Dense conifer forest (assume tree canopy cover >50%). Source: Romain-Bondi et al. 2009; Schroeder 1984</td>
<td>196</td>
<td>141</td>
<td>-55</td>
<td>Undertake altitudinal migrations between more open, lower elevation breeding areas and higher elevation wintering areas located in dense conifer forest (BirdWeb 2013). Forest edge habitat created by managed ski trails may provide suitable nesting habitat. Herbageous cover within managed ski trails expected to provide summer foraging opportunities. Human presence and disturbance associated with expanded alpine skiing is expected to reduce suitability of subalpine tree islands as winter foraging and roosting habitat. Grouse are currently exposed to a low level of human disturbance from backcountry skiing.</td>
</tr>
<tr>
<td>Brown creeper (Certhia americana)</td>
<td>Breeding/nesting: Forest stands with [quadratic mean diameter of trees >7.5” or quadratic mean diameter of snags >7.5”, or 8 largest trees/ac >20” dbh. Source: Romain-Bondi et al. 2009</td>
<td>264</td>
<td>187</td>
<td>-77</td>
<td>Forest fragmentation resulting from ski trail construction may reduce suitability of retained tree islands. High-altitude breeders may move down-slope into the foothills and valleys during winter. There may be some dispersal from eastern Washington in winter (BirdWeb 2013).</td>
</tr>
<tr>
<td>Pacific (winter) wren (Troglodytes troglodytes)</td>
<td>Breeding/nesting/summer foraging: Forest stands with tree canopy cover >35% and cover of coarse woody debris >7.5%, or Any habitat within 25’ of a stream. Source: Romain-Bondi et al. 2009; Gould et al. 1999</td>
<td>187</td>
<td>131</td>
<td>-56</td>
<td>Wrens from colder locales move to more temperate habitats throughout the western U.S. during winter. Forest fragmentation resulting from ski trail construction may reduce suitability of retained tree islands.</td>
</tr>
</tbody>
</table>
Table EIS 3.4-5: Change in Suitable Habitat for the Twenty-One Focal Wildlife Species Under Alternative 2

<table>
<thead>
<tr>
<th>Species</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
<th>Estimated Habitat (acres): As Built Conditions</th>
<th>Net Habitat Change (acres)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olive-sided flycatcher</td>
<td>Breeding/nesting: Forest stands with tree canopy cover <50%, and a tree density between 25 and 53 trees per acre or snag density between 6 and 17 trees per acre. Source: Romain-Bondi et al. 2009; Vesley et al. 2007</td>
<td>12</td>
<td>10</td>
<td>-2</td>
<td>Neotropical migrant not present during winter months. Openings created by ski trails may increase levels of nest parasitism by brown-headed cowbirds, and increase rates of nest predation by ravens and other avian predators. Habitat edge created by managed ski trails may provide beneficial foraging habitat for olive-sided flycatcher, especially post-breeding.</td>
</tr>
<tr>
<td>American pika</td>
<td>Breeding/nesting/foraging: Talus, and adjacent upland meadow within 5’ of talus, that are above 5000’ in elevation. Source: Romain-Bondi et al. 2009</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>Habitat suitability of talus within ski trails may be reduced during winter if snow compaction from skiing and grooming degrades subnivian zone.</td>
</tr>
<tr>
<td>American pygmy shrew</td>
<td>Breeding/parturition/foraging: All habitats except talus and developed. Source: Romain-Bondi et al. 2009</td>
<td>275</td>
<td>274</td>
<td>-1</td>
<td>Snow compaction from skiing and snow grooming may reduce habitat suitability of the subnivian zone within managed ski trails. Lop and scatter of woody debris during initial clearing and corduroy placement of felled trees could limit adverse effects.</td>
</tr>
<tr>
<td>Silver-haired bat</td>
<td>Foraging/roosting/breeding: All habitats except developed. Source: Romain-Bondi et al. 2009</td>
<td>277</td>
<td>276</td>
<td>-1</td>
<td>Local summer resident. Although clearing for ski trails will remove roosting habitat, the managed ski trails and forest edge represent foraging habitat.</td>
</tr>
<tr>
<td>Hoary bat</td>
<td>Foraging/roosting: All habitats except developed. Source: Romain-Bondi et al. 2009</td>
<td>277</td>
<td>276</td>
<td>-1</td>
<td>Rare local summer (non-breeding) resident. Although clearing for ski trails will remove roosting habitat, the managed ski trails and forest edge represent foraging habitat.</td>
</tr>
</tbody>
</table>
Table EIS 3.4-5:
Change in Suitable Habitat for the Twenty-One Focal Wildlife Species Under Alternative 2

<table>
<thead>
<tr>
<th>Species</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
<th>Estimated Habitat (acres): As Built Conditions</th>
<th>Net Habitat Change (acres)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western toad (Bufo boreas)</td>
<td>Breeding/metamorphosis: Warm, shallow water bodies. Foraging/migration: Stream corridors, and forest stands with <75% tree canopy cover, that lie within 3280’ of breeding ponds. Source: Romain-Bondi et al. 2009</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Adequate water bodies for spawning are absent from the steep, high elevation slopes and headwater streams. Significant upslope movement into the expansion area by post breeding adults or juveniles not expected.</td>
</tr>
<tr>
<td>Compton’s tortoiseshell butterfly (Nymphalis vaularbum)</td>
<td>Breeding/metamorphosis: Habitats containing willow, birch or aspen. Foraging: All habitats, except talus, with tree canopy closure <30%; or All habitats within 30 m of streams. Source: Romain-Bondi et al. 2009</td>
<td>0</td>
<td>109</td>
<td>+60</td>
<td>Absence of preferred larval host plants (willow, birch or aspen) precludes breeding and larval metamorphosis. Flowering plants within managed ski trails expected to provide foraging opportunities for adults.</td>
</tr>
</tbody>
</table>

a Substantial overlap may exist between the various habitat categories examined for a species. Consequently, net habitat change is not additive for a species.
b Moose is a year-round occupant of Mount Spokane State Park, which includes the breeding and calving period. The fact that no breeding/calving habitat was mapped is likely due to the scale of the model not being able to detect small microhabitat features (e.g., hills, flat ridges) that would typically be used for calving.
Under Alternative 2, indirect impacts to wildlife and wildlife habitat could occur from future maintenance of ski trails and chairlift terminals. These impacts would include, but are not limited to, hazard tree removal and periodic mowing/brushing to maintain ski trails in a modified condition suitable for skiing. Indirect impacts as a result of these activities would include the increase in human activity and noise, which could result in avoidance of the area by some wildlife species. These occasions are expected to be brief and the impact of additional presence and noise is expected to cause only temporary and localized avoidance. Mowing/brushing would prevent future forest regeneration by not allowing saplings to establish during the life of the ski area.

Breeding/Rearing Disturbance

Noise generated during construction will represent an unavoidable short-term impact on wildlife. The duration and level of construction noise created during ground clearing and excavation activities may disturb breeding and nesting behavior, particularly of birds such as songbird species and northern goshawks. During 2013, two broadcast acoustical surveys and one intensive search survey were conducted for northern goshawk. The surveys encompassed the 279-acre expansion area, as well as an 800 meter buffer to the north and west of the expansion area. Two additional broadcast acoustical surveys were conducted during the summer of 2014. No visual or auditory detections of northern goshawk were recorded during any of the four broadcast acoustical surveys or the intensive search survey. No northern goshawk nest structures were observed and no accumulations of prey items or plucking posts were encountered (see Appendix E).

Although bird species will vary in their sensitivity to noise disturbance, their nesting life-stage is critical to population viability. Loud and continuous noise events during the egg-laying, incubating, and nestling stages causes adult birds to vacate nests temporarily, if not permanently. Eggs and hatchling birds left unattended in the nest are subject to predation, inclement weather, and abandonment (Anderson and Squires 1997). Nesting season for songbird species such as brown creepers may begin in April but peaks in May, June, and July (NatureServe 2009). Similarly, for raptor species such as the Northern goshawk, first clutches of eggs are produced in the end of April, however, this may be later in the season at higher elevations with colder weather patterns (NatureServe 2009).

Similarly, the noise generated during implementation of Alternative 2 would potentially affect rearing sites for occupant mammal species such as marten, moose, coyote, deer, elk, bats, and pika. This has the potential to result in reduced attentiveness to young, disruption of feeding patterns, abandonment of nests or dens, and/or cause adults to undertake additional risks to their young by moving them to a new location (Snetsinger and White 2009). Bats give birth and raise their young during the late spring, within the months of June and July (NatureServe 2009). Small mammals, such as the pika, begin parturition in May with a peak in June (NatureServe 2009).

Martens and coyotes, medium-sized carnivores of Mount Spokane State Park, den and raise their young during the spring months of March to June. Lynx kittens are delivered late April to late June, with use of
natal den for 21 +/- 17 days. Wolverine birthing is April to June and young weaned seven to eight weeks. Wolves deliver their young April to September. Deer peak fawn birth at Mount Spokane is around June 9 extending two to three weeks on either side, followed by approximately two weeks of extremely low mobility, then another ten weeks until weaned (Pozzanghera 2014).

“After a review of the mammal species listed in the twenty-one species of interest, the critical period for monitoring the effect of construction activities during the denning and young rearing life-stages for most mammal species within the Study Area is March 1 to July 31. If construction is required during this time period, monitoring by a qualified wildlife biologist will be required to determine the presence of and effect of construction activities on these species (see Table EIS 2-4). Wildlife monitoring will be initiated prior to commencement of construction activities and continue until July 31st. In the event one or more of these species is detected between March 1 and July 31, construction in the immediate area would cease immediately, and all project activities would relocate to a location approved by a qualified wildlife biologist.

Displacement/Avoidance Behavior

Increased use of new ski corridors and vegetation removal associated with the proposed project may result in displacement/avoidance behavior of wildlife. In addition, ski trail grooming is often accomplished at night, and noise and light from this activity, particularly in the proposed ski pod may temporarily alter use of the area by nocturnal species (e.g., avoidance). Wildlife often moves away from human activity, or they intentionally avoid associated human recreation sites. Animals displaced by recreation are less likely to survive and reproduce where habitat is unfamiliar or inferior. During breeding, rearing, and winter and early spring foraging seasons, displacement stress on wildlife is likely to increase due to susceptibility to weather, illness, predation, thus reducing individual fitness (Romain-Bondi 2009).

The construction of chairlift and ski trails would reduce the overall amount of undisturbed habitat in the proposed expansion area. Increases in human activity associated with chairlift and ski trail development may reduce the effectiveness of the area as travel habitat for all species, particularly for species sensitive to human activity. Short-term direct impacts include noise and activity associated with ski lift construction and ski trail clearing and grading. Wildlife species that are more dependent on migratory corridors (intact habitat) will be more susceptible to displacement and associated stresses. While this habitat may be undisturbed, existing human presence (e.g., backcountry skiers, hikers) may currently deter the use of the area for some species sensitive to human presence, such as gray wolf and wolverine.

During the summer, ski lift and trail maintenance activities may have direct impacts on animals potentially moving through the area, as the associated noise and activity may alter use of the area. These activities would be expected to be of short duration with lift maintenance occurring on an annual basis and ski trail maintenance occurring less frequently, as vegetation growth rates are slow.
Implementation of either of the action alternatives has the potential to displace some wildlife species from their existing habitat into habitats that may already be occupied, potentially leading to mortality in some species. This displacement and avoidance behavior would be the result of increased human presence and loss of habitat in the Study Area.

Snag/Coarse Woody Debris Reduction

Current density of snags and coarse woody debris throughout the Study Area is relatively high, due to wind throw, ice damage, disease and insect outbreaks. A number of the twenty-one focal species depend on snags and coarse woody debris as critical habitat elements for foraging, reproduction, roosting and dispersal habitat (see summary table in Romain-Bondi et al. 2009, Tables 6–9, pgs 19–25). Specifically, large trees and snags are preferred habitat elements for a host of the focal species within the Study Area including: silver-haired and hoary bats, olive-sided flycatchers, northern goshawks, brown creepers, pileated woodpeckers, American marten, and lynx. Similarly, coarse woody debris is a preferred habitat element for American marten, lynx, pileated woodpecker, winter wren, American pygmy shrew, and western toad. Large trees, snags, and coarse woody debris are important to these focal species for nesting, denning, roosting, cover and/or foraging habitat. All large trees and snags (over 20 inches dbh) located in proposed tree islands will be left standing unless they pose a hazard to ski area guests. No formal trails should be routed into these preferred wildlife habitat elements in tree islands.

Habitat Connectivity

Habitat connectivity and fragmentation refer to the size, quality, and spatial arrangement of patches of a species’ habitat across the landscape, particularly the number and arrangement of these patches as they relate to the dispersal of organisms. No defined wildlife corridors have been mapped for the expansion area. A generalized wildlife travel corridor links Mount Spokane State Park with the rest of the Selkirk Mountains to the north. Both action alternatives would affect habitat connectivity to varying degrees. Ongoing and future projects occurring in and around previously developed areas that currently receive a high level of human activity would continue to limit the use of some portions of those areas by wildlife.

Habitat fragmentation/edge effects are associated with many projects that result in vegetation removal. It is anticipated that the forest fragmentation effects on songbirds under the action alternatives would mainly include nest parasitism and presence of nest predators (such as brown-headed cowbirds) in the new ski trail corridors and adjacent interior forest.

As a worst case scenario, habitat connectivity across the PASEA is addressed from the perspective of transient lynx, presumably less familiar with landscape features and exhibiting a broader selection of habitat types for movements than resident lynx. Potential movement patterns of transient lynx (dispersing and male mating season) would also cover those of resident lynx (i.e., within annual home ranges and foraging movements within the winter home range subset).

The ability of lynx to cross the PASEA is an issue as animals move between largely intact habitat blocks. Habitat connectivity across the PASEA is most limited during the winter ski season (mid-November to
mid-April), when widespread human disturbance from skiing occurs during daylight hours. This provides an approximately 16-hour interval each day for lynx to cross the PASEA relatively undisturbed by human presence during the crepuscular and nocturnal hours when lynx are most likely to be active.

Although lynx are primarily active during nocturnal and crepuscular activity periods that are largely exclusive with diurnal skiing, they may be active at any time of day. As a worst case scenario, what would happen to a lynx “caught” on ski terrain while attempting to cross areas disturbed by skiers in its daybed or in an intertrail island? Possibilities include (1) the lynx continuing across the skiing area while avoiding skiers until it was out of active ski terrain; (2) the lynx stopping in forested cover or moving to an intertrail island, where it would likely be disturbed over the course of the ski day, before continuing its crossing; or (3) the lynx retreats back through the ski area where it may be stressed by skiers. Lynx have been observed in active ski terrain during operating hours at Durango Mountain Resort and Telluride Ski Area and remained in the vicinity of those ski areas after those encounters (Tompkins and Grother, 2006). While those two ski areas are in different contexts than Mount Spokane, these accounts provide insight into how some lynx respond to active ski terrain. Other, similar anecdotal accounts have been documented at Canadian ski areas (Roe et al. 2000). However, as a worst case scenario, (1) all such encounters would result in harassment, (2) encounters with humans that delayed the ski area crossing would result in further impaired connectivity (i.e., between effective patches of DSH and higher quality foraging habitat on each end of the ski area), and (3) a lack of connectivity for those lynx that might abort the crossing attempt. The significance of that eventuality should be tempered by the likelihood of a lynx not being able to cross the ski area at all and the likelihood of a winter crossing, when lynx are generally sedentary within higher quality winter range subsets where the prey base is more abundant.

The best available data indicate “the distribution of habitats across a lynx range should consider daily movement distances of resident females (typically up to 3 to 6 miles)” (Ruediger et al. 2000). With relatively no vegetation clearing for ski area facilities in the PASEA, there are currently no vegetative barriers to lynx movement. For clarity, should new ski area facilities be introduced into the PASEA the data indicate that if the ski trail development is less than a minimum of 3 miles in width, it would not exceed the maximum 3- to 6-mile range recommended for project planning (Ruediger et al. 2000, p. 79).

With respect to the ability of lynx to cross the expansion area, it is likely that virtually all lynx could cross the area during the majority of the months outside of the ski season and that most lynx should be able to cross during the ski season if they exhibit their typical nocturnal and crepuscular activity patterns. This conclusion is based on (1) lynx have been documented crossing through other ski areas and their surrounding areas (e.g., Beaver Creek Resort, Vail Resort, Vail Pass, Copper Mountain Resort, Keystone Resort, Arapahoe Basin, Wolf Creek Ski Area, Durango Mountain Resort, Telluride Ski Resort, and Canadian ski areas); (2) that lynx are largely sedentary on their winter range subsets (i.e., they would not likely attempt to cross the ski area during winter, but they are physically capable of doing so if they so choose); (3) that existing distances across the existing and proposed ski terrain are well below the maximum 3- to 6-mile range recommended for project planning; and (4) that if a lynx wanted to, it could
move further than 6 miles overnight (Thompson, unpublished data, Roe et al. 2000; Ruediger et al. 2000; USDA Forest Service 2008). Nevertheless, if a lynx attempted to cross developed and active ski terrain during the day during the winter ski season, that movement attempt may be impaired or thwarted.

3.4.3.3 Alternative 3

Direct and indirect impacts to wildlife under Alternative 3 would be essentially the same as Alternative 2. Under Alternative 3, there would be approximately 74.2 acres of direct impacts to vegetation communities resulting from vegetation removal for the construction of the proposed chairlift and seven ski trails. This equates to approximately 1.9 acres less vegetation removal when compared to Alternative 2 (see Figure EIS-7). Table EIS 3.4-6 identifies the estimated changes to habitat utilized by the twenty-one focal wildlife species under Alternative 3.
Table EIS 3.4-6:
Change in Suitable Habitat for the Twenty-One Focal Wildlife Species Under Alternative 3

<table>
<thead>
<tr>
<th>Species</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
<th>Estimated Habitat (acres): As Built Conditions</th>
<th>Net Habitat Change (acres)<sup>a</sup></th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada lynx (Lynx canadensis)</td>
<td>Breeding/denning: Forest stands with tree canopy closure ≥40% and coarse woody debris ≥15%. Summer foraging: Forest and shrub stands with shrub cover ≥10%. Winter foraging: Forest stands with ≤30% slope and shrub cover ≥20%. Dispersal: All forest and shrub stands, plus any herbaceous/nonvegetated cover type < 300’ from forest or shrub stands.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>PHS database contains 15 records, dating from 1988 to 2002, within 5 miles of the expansion area. No records from the expansion area. Although adequate habitat is present, denning is not documented in Mount Spokane State Park (Romain-Bondi et al. 2009). Subalpine forest in the expansion area generally lacks large diameter trees characteristic of denning habitat. Deep winter snow pack may reduce habitat suitability for snowshoe hare, the preferred winter prey of lynx. Human activity and disturbance associated with expanded alpine skiing may reduce suitability of winter dispersal and foraging habitat. Lynx are currently exposed to a low level of human disturbance from backcountry skiing.</td>
</tr>
<tr>
<td>Gray wolf (Canis lupis)</td>
<td>Summer foraging: Deer, elk and moose habitat >0.25 mile from the Summit Road and Kit Carson Trail. Winter foraging: Deer, elk and moose habitat < 3500’ in elevation.</td>
<td>138</td>
<td>138</td>
<td>0</td>
<td>Wolf use of Mount Spokane State Park is believed to be limited to dispersal and foraging by lone individuals. High snow depth during winter months precludes use by preferred ungulate prey.</td>
</tr>
</tbody>
</table>
Table EIS 3.4-6:
Change in Suitable Habitat for the Twenty-One Focal Wildlife Species Under Alternative 3

<table>
<thead>
<tr>
<th>Species</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
<th>Estimated Habitat (acres): As Built Conditions</th>
<th>Net Habitat Change (acres)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolverine (Gulo gulo)</td>
<td>Summer foraging: Any habitats >5000’ in elevation. Winter foraging: Any habitats >3500’ in elevation. Source: Romain-Bondi et al. 2009</td>
<td>191</td>
<td>191</td>
<td>0</td>
<td>Human activity and disturbance associated with expanded alpine skiing may reduce suitability of high elevation winter foraging habitat. Wolverine are currently exposed to a low level of human disturbance from backcountry skiing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>279</td>
<td>279</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>American marten (Martes americana)</td>
<td>Non-winter cover and foraging: All habitats except developed. Winter cover and foraging: Forest stands with tree canopy cover >37% and either a) 8 largest trees/ac ≥19” dbh; b) more than 4 snags/ac with a quadratic mean diameter ≥12”; or c) coarse woody debris between 20% and 50%. Non-forest areas <165’ from suitable forest stands. Source: Romain-Bondi et al. 2009; Allen 1982; Morrison et al. 2007</td>
<td>277</td>
<td>276</td>
<td>-1</td>
<td>Managed ski trails are expected to provide foraging habitat after snow melt. Snow compaction from skiing and snow grooming could adversely affect the subnivian zone within managed ski trails, reducing winter prey availability. Lop and scatter of woody debris during initial clearing and corduroy placement of felled trees could limit this effect.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140</td>
<td>103</td>
<td>-37</td>
<td></td>
</tr>
<tr>
<td>Rocky Mountain elk (Cervus elaphus)</td>
<td>Cover: Forest stands >0.25 mile from Summit Road and tree canopy cover >50%. Summer/fall foraging: Any habitat [<5000’ in elevation, <60% slope or >200’ from the Summit Road] with tree canopy cover ≤ 40% and within 900’ of elk cover. Winter foraging: Habitats <3500’ in elevation. Source: Romain-Bondi et al. 2009</td>
<td>74</td>
<td>49</td>
<td>-25</td>
<td>Managed ski trails in close proximity to cover would provide foraging habitat after snow melt. High snow depths preclude use of the expansion area during winter months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2</td>
<td>29</td>
<td>+27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table EIS 3.4-6: Change in Suitable Habitat for the Twenty-One Focal Wildlife Species Under Alternative 3

<table>
<thead>
<tr>
<th>Species</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
<th>Estimated Habitat (acres): As Built Conditions</th>
<th>Net Habitat Change (acres)</th>
<th>Comments</th>
</tr>
</thead>
</table>
| White-tailed deer (Odocoileus virginianus ochrourus) | Summer/fall foraging:
 Any habitat with herbaceous cover >15% or shrub cover >22%.
Summer/fall cover:
 Forest stands with canopy cover >50%, or
 Any habitat with shrub/sapling tree cover >52%.
Winter foraging/cover:
 Habitats <3000’ in elevation.
Source: Romain-Bondi et al. 2009; Kieffer et al. 1999 | 276 | 277 | +1 | Managed ski trails in close proximity to cover would provide foraging habitat after snow melt. |
| | | 172 | 119 | -53 | High snow depths preclude use of the expansion area during winter months. |
| | | 0 | 0 | 0 | |
| Moose (Alces alces) | Breeding/calving:
 Forest and shrub stands with gentle slopes (0–10%) and southerly exposures
Summer/fall foraging:
 Forest and shrub stands with slopes <50% and shrub cover between 5% and 95%.
Summer cover:
 Forest stands with canopy cover >70% and canopy height > 33’
Winter foraging/cover:
 Snow depths <35”
Source: Romain-Bondi et al. 2009 | 0 | 0 | 0 | Steep slopes and northwest exposures not expected to provide breeding/calving habitat. |
<p>| | | 274 | 275 | +1 | Managed ski trails in close proximity to cover would provide foraging habitat after snow melt. |
| | | 42 | 31 | -11 | High snow depths preclude use of the expansion area during winter months. |
| | | 0 | 0 | 0 | |</p>
<table>
<thead>
<tr>
<th>Species</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
<th>Estimated Habitat (acres): As Built Conditions</th>
<th>Net Habitat Change (acres)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern goshawk</td>
<td>Breeding/nesting: Forest stands with slopes <70%, tree canopy cover >40%, 8 largest trees/ac >19” dbh, and avg tree height >65’. Foraging: Forest stands with slopes <70%, tree canopy cover >32%, and avg tree height >65’, or Nonforest stands <4 acres interspersed with suitable forest. Source: Romain-Bondi et al. 2009; Morrison et al. 2007</td>
<td>44</td>
<td>30</td>
<td>-10</td>
<td>An intensive search survey of potentially suitable nesting habitat in 2013 detected no evidence of goshawk nesting in or within 328’ of the expansion area, nor did two additional follow up acoustic broadcast surveys during the summer of 2014. Forest fragmentation resulting from ski trail construction may reduce suitability of retained tree islands as foraging habitat.</td>
</tr>
<tr>
<td>Boreal owl</td>
<td>Breeding/nesting: Forest stands >4000’ in elevation with combined trees and snags/ac >23, and 8 largest trees/ac >14 in dbh. Foraging/roosting: Forest stands >3500’ with tree canopy cover >35%. Source: Romain-Bondi et al. 2009; Heinrich et al. 1999</td>
<td>209</td>
<td>146</td>
<td>-63</td>
<td>Uncommon year-round resident in mountains of northeast Washington. Although considered fairly tolerant of human disturbance, human activity associated with expanded alpine skiing may reduce suitability of subalpine tree islands as winter foraging and roosting habitat. Boreal owl are currently exposed to a low level of human disturbance from backcountry skiing.</td>
</tr>
</tbody>
</table>
Table EIS 3.4-6:
Change in Suitable Habitat for the Twenty-One Focal Wildlife Species Under Alternative 3

<table>
<thead>
<tr>
<th>Species</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
<th>Estimated Habitat (acres): As Built Conditions</th>
<th>Net Habitat Change (acres)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pileated woodpecker</td>
<td>Breeding/nesting: Forest stands with tree canopy cover >50%, and 8 largest trees/ac >20" dbh.</td>
<td>33</td>
<td>21</td>
<td>-12</td>
<td>Subalpine forest generally lacked large diameter snags required for nesting.</td>
</tr>
<tr>
<td></td>
<td>Foraging: Forest stands with tree canopy cover >50%, and quadratic mean diameter of snags >9.8 in or cover of coarse woody debris >10%.</td>
<td>178</td>
<td>123</td>
<td>-55</td>
<td>No field evidence of foraging by pileated woodpeckers was observed above 4,808’ in elevation.</td>
</tr>
<tr>
<td></td>
<td>Roosting: Forest stands with tree canopy cover >50%, and 8 largest trees/ac >16 in dbh.</td>
<td>169</td>
<td>116</td>
<td>-53</td>
<td>Subalpine forest generally lacked large diameter snags required for roosting</td>
</tr>
<tr>
<td>Black-backed woodpecker</td>
<td>Breeding/nesting: Forest stands with quadratic mean diameter of snags >10", or # snags/ac >30.</td>
<td>264</td>
<td>187</td>
<td>-77</td>
<td>Densities of black-backed woodpeckers are expected to be low because snags within high severity tree kill areas are older than the one- to five-year mortality range preferred by this species.</td>
</tr>
<tr>
<td>(Picoides arcticus)</td>
<td>Foraging/roosting: Forest stands with # snags/ac >26.</td>
<td>264</td>
<td>186</td>
<td>-78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source: Romain-Bondi et al. 2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table EIS 3.4-6:
Change in Suitable Habitat for the Twenty-One Focal Wildlife Species Under Alternative 3

<table>
<thead>
<tr>
<th>Species</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
<th>Estimated Habitat (acres): As Built Conditions</th>
<th>Net Habitat Change (acres)(^a)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dusky grouse (Dendragapus obscurus pallidus)</td>
<td>Breeding/nesting: Any habitat with tree canopy cover between 10 and 65%, and shrub cover between 5% and 53% or herbaceous cover between 20% and 80%. Summer foraging: Any habitat with shrub cover between 5% and 53% or herbaceous cover between 20% and 80%. Winter foraging and roosting: Dense conifer forest (assume tree canopy cover >50%).</td>
<td>196</td>
<td>141</td>
<td>-55</td>
<td>Undertake altitudinal migrations between more open, lower elevation breeding areas and higher elevation wintering areas located in dense conifer forest (BirdWeb 2013). Forest edge habitat created by managed ski trails may provide suitable nesting habitat. Herbaceous cover within managed ski trails expected to provide summer foraging opportunities. Human presence and disturbance associated with expanded alpine skiing is expected to reduce suitability of subalpine tree islands as winter foraging and roosting habitat. Grouse are currently exposed to a low level of human disturbance from backcountry skiing.</td>
</tr>
<tr>
<td>Brown creeper (Certhia americana)</td>
<td>Breeding/nesting/foraging: Forest stands with [quadratic mean diameter of trees >7.5" or quadratic mean diameter of snags >7.5"] or 8 largest trees/ac >20” dbh.</td>
<td>264</td>
<td>187</td>
<td>-77</td>
<td>Forest fragmentation resulting from ski trail construction may reduce suitability of retained tree islands. High-altitude breeders may move down-slope into the foothills and valleys during winter. There may be some dispersal from eastern Washington in winter (BirdWeb 2013).</td>
</tr>
<tr>
<td>Pacific (winter) wren (Troglodytes troglodytes)</td>
<td>Breeding/nesting/summer foraging: Forest stands with tree canopy cover >35% and cover of coarse woody debris >7.5%, or Any habitat within 25’ of a stream.</td>
<td>187</td>
<td>131</td>
<td>-56</td>
<td>Wrens from colder locales move to more temperate habitats throughout the western U.S. during winter. Forest fragmentation resulting from ski trail construction may reduce suitability of retained tree islands.</td>
</tr>
</tbody>
</table>

Source: Romain-Bondi et al. 2009; Schroeder 1984; Gould et al. 1999
Table EIS 3.4-6:
Change in Suitable Habitat for the Twenty-One Focal Wildlife Species Under Alternative 3

<table>
<thead>
<tr>
<th>Species</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
<th>Estimated Habitat (acres): As Built Conditions</th>
<th>Net Habitat Change (acres)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olive-sided flycatcher</td>
<td>Breeding/nesting: Forest stands with tree canopy cover <50%, and a tree density between 25 and 53 trees per acre or snag density between 6 and 17 trees per acre.</td>
<td>12</td>
<td>10</td>
<td>-2</td>
<td>Neotropical migrant not present during winter months. Openings created by ski trails may increase levels of nest parasitism by brown-headed cowbirds, and increase rates of nest predation by ravens and other avian predators. Habitat edge created by managed ski trails may provide beneficial foraging habitat for olive-sided flycatcher, especially post-breeding.</td>
</tr>
<tr>
<td>American pika</td>
<td>Breeding/nesting/foraging: Talus, and adjacent upland meadow within 5' of talus, that are above 5000' in elevation.</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>Habitat suitability of talus within ski trails may be reduced during winter if snow compaction from skiing and grooming degrades subnivian zone.</td>
</tr>
<tr>
<td>American pygmy shrew</td>
<td>Breeding/parturition/foraging: All habitats except talus and developed.</td>
<td>275</td>
<td>274</td>
<td>-1</td>
<td>Snow compaction from skiing and snow grooming may reduce habitat suitability of the subnivian zone within managed ski trails Lop and scatter of woody debris during initial clearing and corduroy placement of felled trees could limit adverse effects.</td>
</tr>
<tr>
<td>Silver-haired bat</td>
<td>Foraging/roosting/breeding: All habitats except developed.</td>
<td>277</td>
<td>276</td>
<td>-1</td>
<td>Local summer resident. Although clearing for ski trails will remove roosting habitat, the managed ski trails and forest edge represent foraging habitat.</td>
</tr>
<tr>
<td>Hoary bat</td>
<td>Foraging/roosting: All habitats except developed.</td>
<td>277</td>
<td>276</td>
<td>-1</td>
<td>Rare local summer (non-breeding) resident. Although clearing for ski trails will remove roosting habitat, the managed ski trails and forest edge represent foraging habitat.</td>
</tr>
</tbody>
</table>
Table EIS 3.4-6:
Change in Suitable Habitat for the Twenty-One Focal Wildlife Species Under Alternative 3

<table>
<thead>
<tr>
<th>Species</th>
<th>Key Habitat Elements Used to Model Suitable Habitat</th>
<th>Estimated Habitat (acres): Existing Conditions</th>
<th>Estimated Habitat (acres): As Built Conditions</th>
<th>Net Habitat Change (acres)(^a)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western toad (Bufo boreas)</td>
<td>Breeding/metamorphosis: Warm, shallow water bodies. Foraging/migration: Stream corridors, and forest stands with <75% tree canopy cover, that lie within 3280’ of breeding ponds. Source: Romain-Bondi et al. 2009</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Adequate water bodies for spawning are absent from the steep, high elevation slopes and headwater streams. Significant upslope movement into the expansion area by post breeding adults or juveniles not expected.</td>
</tr>
<tr>
<td>Compton’s tortoiseshell butterfly (Nymphalis vauxalbum)</td>
<td>Breeding/metamorphosis: Habitats containing willow, birch or aspen. Foraging: All habitats, except talus, with tree canopy closure <30%; or All habitats within 30 m of streams. Source: Romain-Bondi et al. 2009</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Absence of preferred larval host plants (willow, birch or aspen) precludes breeding and larval metamorphosis. Flowering plants within managed ski trails expected to provide foraging opportunities for adults.</td>
</tr>
</tbody>
</table>

\(^a\) Substantial overlap may exist between the various habitat categories examined for a species. Consequently, net habitat change is not additive for a species.
3.4.4 Mitigation Measures

Potential direct and indirect effects of the action alternatives would be minimized through implementation of the BMPs and Mitigation Measures described in Table EIS 2-4 and through project specific operational plans. Each mitigation measure was designed to address the focal wildlife species and their habitat associations and requirements. For example, the mitigation measure table includes a requirement that all large trees and snags (over 20 inches dbh) located in proposed tree islands will be left standing unless they are identified by State Parks as a hazard tree.

3.4.5 Cumulative Effects

Cumulative impacts are the effects that may result from the incremental impact of an action when added to other past, present, and reasonably foreseeable future actions. Generally, an impact can be considered cumulative if: a) effects of several actions occur in the same locale; b) effects on a particular resource are similar in nature; and c) effects are long-term in nature. Potential areas where cumulative impacts might occur to wildlife resources as a result of the construction and operation of new ski area facilities are discussed below.

For purposes of this analysis, cumulative effects to vegetation and wildlife habitat are considered at the site scale (i.e., the 279-acre Study Area). The comprehensive trail plan, which is part of the 2010 Master Facilities Plan, contemplates a multi-use trail in the PASEA, depending upon the land classification adopted. Implementation of the trail plan could overlap in space and time with the projects being analyzed within this Final EIS; therefore, it would contribute cumulatively to the impacts to vegetation and wildlife within the Study Area through alteration of vegetation and habitat.

The alteration of vegetation communities described in section 3.2 – Vegetation has the potential to impact wildlife habitat. For purposes of this analysis, cumulative impacts could result from both long-term and short-term losses of wildlife habitat. A long-term loss of wildlife habitat occurs when the native vegetation community is not easily replaced. For example, the removal of forested habitat is a long-term impact as the re-growth of the forest occurs on the order of decades. Similarly, the creation of new impervious surfaces in any community type results in the long-term loss of wildlife habitat. Short-term losses of habitat occur when herbaceous and shrub communities are disturbed, but are ultimately revegetated in a short (one to two years) period of time. It should be noted that routine vegetation maintenance activities to maintain the developed ski terrain in a non-forested state will require periodic mowing, which may limit the effectiveness of wildlife use. A second type of short-term cumulative impact occurs during construction phases of the various actions required to implement either of the action alternatives. During this phase, noise generated by equipment and the increased human presence can impact wildlife in the vicinity of the action. This typically leads to avoidance behaviors by wildlife species and may disrupt normal behavioral patterns.

A landscape level analysis of cumulative effects was performed for the Mt. Spokane State Park Master Facility Plan in 2009. Additional detail on the cumulative effects at a regional and local level in the
context of the surrounding landscape and the human activities and development that have occurred can be found in Morrison and Bondi 2009.

3.5 VISUAL RESOURCES

3.5.1 Introduction

Mount Spokane is prominent from many vantages within Spokane County. MS 2000s proposal, which involves the development of a chairlift and associated trails into the 279-acre expansion area, has the potential to affect the visual resources of the area. As such, this section evaluates the visual resources that could be affected as a result of the action alternatives. Washington State Parks does not have specific scenery related guidance for the development of facilities on state lands, with the exception of historic cultural landscapes; therefore, this analysis follows the USFS Scenery Management System (SMS) (USDA Forest Service 1995).

Under its Cultural Resource Management Policy, the agency is directed to use the Secretary of the Interior’s “Standards for the Treatment of Historic Properties” as general guidance for work on any historic properties, including cultural landscapes. Analysis of cultural landscape impacts is included under Historic, Cultural and Archaeological Resources (see section 3.7.1).

Analysis of the aesthetic environment requires an evaluation of the Study Area and its ability to absorb the effects of both historic and ongoing human modification. Slope, natural vegetation types and patterns, topography, and viewing distance are important factors in this analysis. As discussed below, aside from the summit of Mount Spokane, the Study Area is visible from limited vantage points west of Mount Spokane State Park (e.g., N. Elk-Chattaroy Road, US Highway 2). Therefore, three critical viewpoints proximate to N. Elk-Chattaroy Road were used in this analysis. Effects will be disclosed based on visual changes to the landscape character as viewed from specific critical viewpoints (see section 3.5.3.3) within each area. The following presents a brief description of each visual analysis area.

3.5.2 Scenic Environment Management

The Scenery Management System (SMS) was adopted in 1995 as the primary scenery management direction by the Forest Service. In brief, the SMS is a systematic approach for assessing scenic resources in a Study Area to help make management decisions concerning a specific project.

3.5.2.1 Scenic Integrity and Landscape Character

The SMS measures the degree of “intactness” and “wholeness” of the landscape with “scenic integrity.” SMS utilizes Scenic Integrity Levels (SIL) by using the frame of reference for measuring achievement of SIL as the valued attributes of the “existing” landscape character “being viewed.” In essence, Scenic Integrity Levels are how scenery on public lands is measured in terms of degrees of deviation from the attributes of the natural appearing landscape. Scenic integrity levels are based on a standard set of criteria
established in the Forest Service’s SMS (USDA Forest Service 1995) and include the following five classes described in Table EIS 3.5-1:

<table>
<thead>
<tr>
<th>Scenic Integrity Level</th>
<th>Perception, Degree of Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>None. Existing landscape character is intact with only minute deviations.</td>
</tr>
<tr>
<td>High</td>
<td>Not Evident. Deviations may be present but must repeat form, line, color and texture of characteristic landscape in scale.</td>
</tr>
<tr>
<td>Moderate</td>
<td>Evident, but not Dominant. Noticeable deviations must remain visually subordinate to landscape character.</td>
</tr>
<tr>
<td>Low</td>
<td>Dominant. Deviations begin to dominate but borrow valued attributes such as size, shape, edge and patterns of natural openings or vegetative types.</td>
</tr>
<tr>
<td>Very Low</td>
<td>VeryDominant. Deviations strongly dominate valued landscape character. They may not borrow attributes such as size, shape, edge and pattern but should be shaped to blend with natural terrain.</td>
</tr>
</tbody>
</table>

Source: USDA, 1995

3.5.2.2 Scenery Management System Distance Zones

Viewing distance is important in determining how change is perceived across a landscape. Distance zones are divisions of a particular landscape being viewed, and are used to describe the part of a characteristic landscape that is being inventoried or evaluated.

- **Immediate Foreground**: This zone begins at the viewer and extends to about 300 feet. Individual leaves, flowers, twigs, bark texture, and other details dominate this view.

- **Foreground**: This zone is usually limited to areas within 300 feet to 0.5 mile (not to exceed 0.5 mile) of the observer, but it must be determined on a case-by-case basis, as should any distance zoning. Generally, detail of landforms is more pronounced when viewed from within the foreground zone.

- **Middleground**: Alterations in the middleground (0.5 to 4 miles from the observer) are less distinctive. Texture is normally characterized by the masses of trees in stands or uniform tree cover.

- **Background**: This zone extends from middleground (minimum of 4 miles between the observer and the area being viewed) to infinity. Shape may remain evident beyond 10 miles, especially if it is inconsistent with other landscape forms. Beyond 10 miles, alteration in landscape character becomes obscure.
3.5.2.3 The Built Environment Image Guide

The Built Environment Image Guide (BEIG) was prepared by the Forest Service for the “thoughtful design and management” of the built environment contained within the National Forests (USDA Forest Service 2001). The Forest Service defines the built environment as “the administrative and recreation buildings, landscape structures, site furnishings, structures on roads and trails, and signs installed or operated by the Forest Service, its cooperators, and permittees (USDA Forest Service 2001). The BEIG divides the United States into eight provinces which combine common elements from the ecological and cultural contexts over large geographical areas. The Mount Spokane Concession area is within the Cascadian Province as defined by the Forest Service. Site development, sustainability, and architectural character should conform to BEIG guidelines described for this Province (see Table EIS 2-4).

3.5.3 Affected Environment

3.5.3.1 Scenic Characteristics of Mount Spokane Ski and Snowboard Park’s Concession Area

Developed winter recreation dominates the existing visual landscape on the northeast and east facing slopes of Mount Spokane. The aesthetic landscape near the summit of the mountain has been defined by recreation since the ski area opened to the public, with the development of trails, chairlifts, infrastructure, and skier facilities on State Parks lands.

Alpine skiing on Mount Spokane began in the early 1930s when several ski clubs from the Spokane area began acquiring land and building ski area improvements at various sites around the summit of the mountain. Mount Spokane is also the site of the world’s first double chairlift, constructed in 1946, and incremental improvements have been made to the resort since the area began operation as a developed winter recreation site. Mount Spokane Ski and Snowboard Park currently maintains 32 ski runs, 5 chairlifts, 2 lodges (including restaurant, lounge, ski school, equipment rentals), a ski patrol building, and various administrative support structures on 1,425 acres.

The developed ski area consists of areas of clearing, grading and development (including buildings, chairlift terminals and chairlifts) associated with Mount Spokane Ski and Snowboard Park. The area has been developed for winter recreation and vegetated with grasses and forbs. Several trails, facilities and access roads (e.g., N. Summit Road) traverse across the hillside including the existing day lodge, several maintenance buildings and chairlift towers. Additionally, the historic Vista House is located at the summit of Mount Spokane. Most of the area is visible from access roads within the park on the east side of the mountain. However, this area is sparsely populated as public lands extend east to the Idaho/Washington state line. The closest town is Blanchard, Idaho approximately 5 miles to the northeast.

3.5.3.2 Scenic Characteristics the Areas Proposed for Alteration

Individual project elements within the Study Area (the expansion area) are discussed separately from the Concession area at large to provide the reader with specific information regarding the current visual characteristics of the Study Area in relation to the action alternatives.
As an undeveloped portion of Mount Spokane Ski and Snowboard Park’s Concession area, the expansion area exists in a natural state, which is broadly defined as forested bowls and ridgelines. The existing visual condition within the expansion area also includes the N. Summit Road and adjacent developed ski area facilities (e.g., ski patrol shack, Vista House). However, the expansion area is relatively undeveloped and has a SIL of High (see Table EIS 3.5-1).

3.5.3.3 Critical View Points

In order to analyze potential visual impacts associated with proposed development at Mount Spokane, three critical viewpoints have been displayed (see Illustration 3.5-1 and Figures 8 through 13). These viewpoints are intended to represent the most commonly traveled and used viewpoints of the expansion area, from which development may affect the visual quality and integrity of the area.

It is impractical to undertake a visual analysis of the entire area as a whole. Consequently, three viewpoints were chosen to represent visually sensitive areas within the viewshed. Furthermore, due to topography and aspect, it is evident that the development would not be visible from areas north, east or south of Mount Spokane. Fieldwork and a Google Earth analysis were used to choose the most appropriate viewpoints and to accurately evaluate the effects. Illustration EIS 3.5-1 graphically illustrates the location of the three viewpoints chosen for the analysis.
View Point #1 - East Tallman Road

Viewpoint #1 is located on East Tallman Road approximately 6.5 miles west of the Study Area. Immediate foreground and foreground views are dominated by rural-residential development. Background views are dominated by forested stands and sweeping views of Mount Spokane. Existing background views of the Study Area from Viewpoint #1 meet a SIL of High.

View Point #2 - N. Elk Chattaroy Road

Viewpoint #2 is located on N. Elk Chattaroy Road near the intersection of N. Elk Chattaroy Road and E. Ruff Lane, approximately 6.2 miles west of the Study Area. Immediate foreground views consist of large trees and roadside vegetation. Relatively undisturbed appearing vegetation along N. Elk Chattaroy Road contributes to a natural-appearing setting and would correspond to a SIL of High. Background views are similar to Viewpoint #1 and consist of forested stands and uninterrupted views of Mount Spokane, which also corresponds to a SIL of High.

View Point #3 - East Blanchard Road

Viewpoint #3 is located on East Blanchard Road near the intersection of East Blanchard Road and North Conklin Road, approximately 6.4 miles west of the Study Area. Similar to Viewpoint #1, immediate foreground views are dominated by rural-residential development. Background views are dominated by forested stands and sweeping views of Mount Spokane. Existing background views of the Study Area from Viewpoint #3 meet a SIL of High.

Vista House

The primary viewing point within the park is at the summit of Mount Spokane located at the Vista House. No visual simulations were developed for this location; however, immediate foreground views from the Vista House consist of the parking lot and several ski area facilities (including Chair 1 and an unimproved access road) which dominate the foreground views from the Vista House. Foreground views from the Vista House meet a SIL of Moderate with background views, consisting of sweeping views south to Spokane and east into Idaho meeting a SIL of High. It is important to note that visitors to the Vista House observe developed recreation and ski area facilities as they drive along the Summit Road and park adjacent to the Vista House.

3.5.4 Environmental Consequences

The visual effects of the alternatives were evaluated by comparing the existing landscape character and Scenic Integrity Levels with the conditions that would exist under each alternative. For purposes of this analysis, the scenic integrity describes interactions that deviate from the natural landscape character, including interactions such as vegetation treatments, position and duration of view, and Visual Absorption Capability.
3.5.4.1 Viewpoint #1

Alternative 1

Under Alternative 1, no additional development would occur within the 279-acre expansion area. Visual conditions would remain unchanged. Barring any natural vegetation-altering events, the landscape would continue to appear as described for Viewpoint #1 in section 3.5.3.3.

Alternative 2 and Alternative 3

Under Alternative 2 and 3, vegetation and topography would screen all development as viewed from Viewpoint #1. As such, development on the upper slopes of Mount Spokane would continue to meet an SIL of High as viewed from Viewpoint #1.

3.5.4.2 Viewpoint #2

Alternative 1

Under Alternative 1, no additional development would occur within the 279-acre expansion area. Visual conditions would remain unchanged. Barring any natural vegetation-altering events, the landscape would continue to appear as described for Viewpoint #2 in section 3.5.3.3.

Alternative 2 and Alternative 3

Under Alternative 2 and 3, vegetation and topography would screen all development as viewed from Viewpoint #1. As such, development on the upper slopes of Mount Spokane would continue to meet a SIL of High as viewed from Viewpoint #2.

3.5.4.3 Viewpoint #3

Alternative 1

Under Alternative 1, no additional development would occur within the 279-acre expansion area. Visual conditions would remain unchanged. Barring any natural vegetation-altering events, the landscape would continue to appear as described for Viewpoint #3 in section 3.5.3.3.

Alternative 2 and Alternative 3

As described above, Viewpoint #3 is located in a rural area west of Mount Spokane. Due to the size of Mount Spokane State Park, few relatively well traveled areas exist proximate to the Study Area. Viewpoint #3 was chosen as it is one of the few locations exhibiting a rural-residential population density where the development would be visible.

Under Alternative 2 and 3, immediate foreground, foreground and middleground views would not be affected. As viewed from Viewpoint #3, the new chairlift and four of the seven ski trails would appear in the background view. Where feasible, the edges of ski trails would be scalloped or feathered to reduce any linear appearance and blend into the surrounding landscape. Although it is unlikely that the casual observer would be able to identify the upper terminal of the new chairlift, the color of the upper terminal would be chosen to blend with the adjacent vegetation (see Table EIS 2-4). Under Alternatives 2 and 3,
background views from Viewpoint #3 would meet a SIL of Moderate (Evident, but not Dominant. Noticeable deviations must remain visually subordinate to landscape character).

3.5.4.4 Vista House

Alternative 1

Under Alternative 1, no additional development would occur within the 279-acre expansion area. Visual conditions would remain unchanged. Barring any natural vegetation-altering events, the landscape would continue to appear as described in section 3.5.3.3.

Alternative 2 and Alternative 3

Under Alternatives 2 and 3, existing topography and vegetation would screen the majority of the development when viewed from the Vista House. Immediate foreground and foreground views would continue to meet a SIL of Moderate. Therefore, under Alternatives 2 and 3, views from the Vista House would be described as in the existing condition.

3.5.5 Mitigation Measures

Potential direct and indirect effects of the action alternatives would be minimized through implementation of the BMPs and Mitigation Measures described in Table EIS 2-4 and through project specific operational plans.

3.5.6 Cumulative Effects

Cumulative impacts are the effects that may result from the incremental impact of an action when added to other past, present, and reasonably foreseeable future actions. Generally, an impact can be considered cumulative if: a) effects of several actions occur in the same locale; b) effects on a particular resource are similar in nature; and c) effects are long-term in nature. Potential areas where cumulative impacts might occur to visual resources as a result of the construction and operation of new ski area facilities are discussed below.

The ski area and base area have incrementally developed as skiing has gained popularity. Additionally, recreational development on public lands at Mount Spokane has involved clearing of hiking trails, grading, and construction of lifts, roads (e.g., Summit Road), and buildings (e.g., Vista House). Changes in vegetative patterns and developed facilities are visible from public lands within Mount Spokane State Park. Each of these developments contributes to the developed landscape that is visible to visitors at Mount Spokane; however, existing development within the expansion area is generally screened from view by topography in areas outside the park. As such, the expansion will have minimal visual impact from roads or vista points outside the park.

The action alternatives contain elements that have the potential to result in visual impacts, primarily through the clearing and grading necessary to formalize ski trails and install lift terminals. These facilities will be visible by visitors accessing the Vista House on the Summit Road during the summer as additional
clearing in a relatively forested landscape, although the upper terminal of the new chairlift and new trails will be screened by existing vegetation and topography from the Vista House.

3.6 RECREATION

3.6.1 Introduction

Mount Spokane State Park offers a wide range of recreation opportunities throughout the year. However, Mount Spokane State Park experiences the highest use during the winter months, with alpine skiing as the primary activity. Cross-country skiing is also operated by the Spokane Nordic Ski Education Foundation. Lift-served backcountry skiing, snowshoeing and snowmobiling also occurs in the PASEA.

Mount Spokane Ski and Snowboard Park is the site of the first double chairlift in North America and contains 32 ski runs, 5 double chairlifts, 2 lodges (including restaurant, lounge, ski school, equipment rentals), a ski patrol building, and various administrative support structures on 1,425 acres. Historically, the majority of visits to Mount Spokane Ski and Snowboard Park have been attributed to day visits. Mount Spokane’s location close to the City of Spokane makes it an easy choice for day skiers within this market. Mount Spokane competes with Schweitzer, Silver Mountain, Lookout Pass and 49° North within the local/day skier market. Mount Spokane primarily serves the day use market, which exhibits peak visitation on weekends and holidays, and low visitation during weekdays. A limited amount of overnight lodging is provided in privately owned condominium facilities near the base area requiring an uphill walk or short drive to access ski area facilities. Rentals of some condominium units are offered on year-round basis.

Skier visits ranged from a low of 19,844 visits during the 2004/05 season (due to drought conditions) to 104,724 visits during the 2012/13 season (a record season at Mount Spokane). Over the previous three ski seasons, Mount Spokane has averaged 90,714 annual visits (PSNAA 2011, Mount Spokane 2014).

3.6.2 Affected Environment

Mount Spokane’s alpine facilities operate during the winter and shoulder season months. Guest facilities at Mount Spokane include the two lodges (including restaurant, lounge, ski school, equipment rentals), a ski patrol building, and various administrative support structures.

Mount Spokane generates an average of approximately 90,000 to 100,000 skier visits each winter. Skiers and snowboarders primarily utilize ski trails within the developed ski area boundary but will exit the developed ski area boundary from the summit of Mount Spokane in order to access backcountry ski terrain in the PASEA located on the back side above the Chair 4 Road.

Mount Spokane currently operates five aerial chairlifts. The lift network at Mount Spokane provides access to 45 named trails on approximately 150 acres of formal ski trails and another 130 acres of tree and open skiing. The base area is located at an elevation of approximately 4,200 feet with a summit elevation of 5,889 feet providing 1,689 feet of vertical rise.
3.6.2.1 Alpine Skiing Analysis

Capacity

The overall balance of the existing ski area is evaluated by calculating the skier capacities of Mount Spokane Ski and Snowboard Park’s various facility components, and, in turn, comparing these capacities to the ski area’s Comfortable Carrying Capacity (CCC).

CCC is defined as an optimal level of utilization for the ski area (the number of visitors that can be accommodated at any given time) that guarantees a pleasant recreational experience, while at the same time preserving the quality of the environment. The accurate estimation of the CCC of a mountain is a complex issue and is the single most important planning criterion for the resort. Given proper identification of the mountain’s true capacity, all other related skier service facilities can be planned. The CCC figure is based on a compilation of the uphill hourly capacity of the lift system and the downhill capacity of the trail system, taking into account the typical amount of daily vertical demand desired by skiers of varying ability levels. At full operation, Mount Spokane Ski and Snowboard Park operates five chairlifts accessing 45 designated ski trails, with an estimated CCC of 2,540 guests per day.

Solar Aspect

Slope aspect plays an important role in snow quality and retention at any developed ski area. Slope aspect addresses two significant factors: solar aspect and prevailing wind direction. A variety of exposures present opportunities for a range of slope aspects that can respond to the changes in sun angle, temperature, wind direction, and shadows throughout the day. Typical constraints in relation to the various angles of exposure are discussed below. Generally, ski areas will benefit from north, west, and east solar exposures, and will minimize southern exposures. Prevailing winds will result in both wind scour areas as well as snow deposition areas. A Slope Aspect Analysis encompassing the existing ski area and the proposed expansion area is provided in Figure EIS-17.

- **North-facing**: ideal for snow retention, minimal wind scour, minimal sun exposure. In most cases, north-facing slopes offer the best skiing opportunities from a solar aspect standpoint. Fresh snow will retain its quantity and quality for the longest duration on these aspects. However, on very cold days with icy, frozen, or other low quality snow conditions, north-facing slopes offer a poor ski experience.
- **Northeast-facing**: ideal for snow retention, minimal wind scour, minimal sun exposure.
- **East-facing**: good for snow retention, some wind scour, morning sun exposure. Often provides the best ski experience on cold, sunny days with hard snow—particularly in the morning when the sun warms these areas and softens the snow.
- **Southeast-facing**: fair for snow retention, moderate wind scour, morning and early afternoon sun exposure.
- **South-facing**: typically poor for snow retention (unless at high elevations), moderate to high wind scour, full sun exposure. Due to typically poor snow quality, south-facing slopes are usually
considered to be the least favorable aspect for skiing. However, on very cold (sunny) days with very hard or icy snow conditions, these are likely to provide the best ski experience.

- **Southwest-facing**: poor for snow retention, high wind scour, full sun exposure.
- **West-facing**: fair for snow retention, moderate wind scour, late morning and afternoon sun exposure. As many skiers (consciously or otherwise) like to follow the sun around the mountain, west-facing slopes are often popular for afternoon skiing.
- **Northwest-facing**: good for snow retention, low wind scour, some afternoon sun.

As Figure EIS-17 shows, Mount Spokane has a wide variety of existing and proposed solar aspects. Chair 1 has southeast and east exposures, Chair 2 has east exposure, Chair 3 has south and southeast exposures, and Chair 4 has northeast exposure with small amounts of north exposure. As a result, most of the existing ski terrain does not have ideal aspect and is susceptible to significant sun exposure, particularly the Chair 3 terrain. There is significant morning sun, meaning fresh snow typically does not retain either quantity or quality. However, the east exposure is good for softening up hard snow. Chair 4 is the only portion of the existing ski area with somewhat north-facing exposures.

The expansion terrain within the proposed Chair 6 area has predominantly northwest facing slopes, with some north facing and some west facing. From a skiing standpoint, this mix is an ideal addition to complement the existing terrain, as none of the existing terrain has this exposure. Having the full range of exposures allows for the best skiing options under the range of snow conditions and times of the day. The north and northwest facing aspects off of the proposed Chair 6 area represent favorable exposures and should generally provide better snow quantity and quality than the snow available off of Chairs 1, 2, and 3.

With both south to south-west winds and north-east winds prevalent in the winter in Spokane, the area of the proposed Chair 6 and associated ski trails is a significant snow deposition area. Winds blowing up the south, east, and northeast slopes all deposit snow into this area (SE Group, 2014).

Terrain Distribution, Trail Density and Circulation

Available ski terrain should accommodate the full range of skier ability levels consistent with market demand. The existing terrain at Mount Spokane is predominantly characterized by intermediate and advanced terrain. At full operation (e.g., all chairlifts operating), Mount Spokane’s terrain distribution by skier ability level is as displayed in Illustration EIS 3.6-1. Mount Spokane’s current terrain distribution is shown in gray while industry standard/market demand terrain distribution is shown in black.
As shown in Illustration EIS 3.6-1, Mount Spokane currently has an oversupply of advanced terrain, a slight excess of intermediate and expert terrain and a deficit of beginner, novice, and low intermediate terrain, as compared to industry standards.

Basic Alpine Trail Design Criteria

Ideally, a resort’s trail network accommodates a wide spectrum of guests, with the specific collection of terrain derived, in large part, from a resort’s mix of skier ability levels. Trails should have consistent slope gradients, which ensure an interesting and challenging experience for the ability level for which the trail is designed. If gradients are not consistent down the trail, then that means that there will be sections that are too steep or too flat to hold the interest of the given ability level. Trail widths will vary depending upon several factors, including, but not limited to, the topography of the site, the desired trail density, the caliber of skier or snowboarder being served, the grooming and snowmaking requirements. The trail network should be designed to maximize fall-line conditions. Trails should also be designed to minimize cross-traffic situations, which are found at convergence zones and other bottlenecks.

In most instances, trail ability level classification is based upon maximum slope gradients observed in the field or in detailed mapping. In limited instances, additional trail attributes (e.g., trail widths, slope grooming practices, slope gradients immediately below the maximum slope gradient pitch, trail undulations, etc.) are taken into consideration during the assignment of trail difficulty. As a result, in
limited instances, trail classifications are indicative of the overall degree of challenge associated with a particular trail, not just maximum slope gradient.

The calculation of terrain capacity is based, in large part, on the acceptable number of skiers and snowboarders, which can be accommodated on each acre of maintained terrain, at any one given time. In large part, acceptable trail densities are determined by a resort’s marketplace (e.g., guest expectations, ratio of skiers to snowboarders, market niche, marketplace ability levels, etc.), as well as by the resort type. Terrain capacity is largely a function of trail density criteria and terrain area associated with each ability level. Comfortable densities are higher for lower ability level skiers. In essence, since expert skiers expect more terrain per skier, intermediate and lower level terrain can comfortably hold more skiers per acre. The following analysis discusses the quality of the existing lift and trail network available at Mount Spokane.

- Chair 1 is characterized by advanced and expert level terrain. This area is used by the Mount Spokane Ski Race Association for training as well as expert level skiers. This terrain has excellent, consistent, fall-line terrain—all in the advanced and expert ability levels.

- Chair 2 is characterized primarily by advanced level terrain. This chairlift is under-utilized as the steep terrain makes it unattractive to intermediate and lower level skiers. While not quite as consistent as Chair 1, this terrain provides good advanced and expert level terrain.

- Chair 3 is characterized by intermediate and low intermediate terrain. This chairlift gets heavy use by ski area guests, as the type of terrain is in high demand as shown in Illustration EIS 3.6-1. The upper half of the trails are good, consistent low intermediate and intermediate level trails, but the lower half requires a traverse and ski-back through beginner terrain, with some trails having very flat sections. The trails in the Chair 3 pod do not have consistent fall-lines, as they require off fall-line skiing at both the top and bottom sections.

- Terrain accessed by Chair 4 is bounded by two ski trails that define the outer skiable edges of the terrain. These trails, called Ridge Run and Half Hitch/Lamonga Pass, are both intermediate level or lower intermediate trails and both receive high use. The area between these two trails is characterized by advanced and expert level terrain. The trail named Exterminator, and the trail under the lift line named Geronimo, are located between the outer trails. These two trails are rated expert level.

- Chair 5 services the novice level terrain by the base lodge.

As discussed above, Mount Spokane currently has a large quantity of good, consistent gradient, fall-line, advanced and expert level terrain, available off Chairs 1, 2, and 4. As a result, the resort has no particular need for additional advanced or expert level terrain. Also note that advanced and expert skiers make up a small section of the overall skier market. Mount Spokane has a deficit of consistent gradient and consistent fall-line terrain that serves low intermediate and intermediate level skiers. This is the largest section of the market (see Illustration EIS 3.6-1), so it will appeal to the greatest percentage of skiers.
3.6.2.2 Visitation

Mount Spokane has exhibited visitation ranging from approximately 19,700 to over 104,724 annual skier visits (PNSAA 2011, Mount Spokane 2014). During the 2001/02 ski season, Mount Spokane exhibited over 94,000 visits. Since that time, annual visitation has been relatively stable, as demonstrated by the twelve-year average of 77,455 annual visits and a three-year average of 90,714 visits (PNSAA 2011, Mount Spokane 2014; Illustration EIS 3.6-2) since the 2010/11 ski season.\(^{13}\) As the concessionaire (MS 2000) has continued to build loyalty with their patrons, season pass sales have steadily increased from 2,500 to 4,000 a year. Additionally, Mount Spokane has benefited by the increase in publicity related to the Commission’s ongoing debate regarding the potential classification of a portion of the PASEA to allow for lift-served alpine skiing. It is recognized that favorable or poor weather conditions have historically caused skier visits to fluctuate from year to year as evidenced by visitation during the 2004/05 season, a particularly warm, low-snow season.

![Illustration EIS 3.6-2: Mount Spokane Skier Visits (2001/02 through 2012/13)](image)

3.6.2.3 Snow Conditions\(^{14}\)

Mount Spokane has the distinct problem of requiring much greater snow levels than competing mountains due to its southerly dominated exposure. With the same amount of snow, Mount Spokane will generally be the last ski area in its market to open and the first ski area to close. Historically, Mount Spokane has

\(^{13}\) Mount Spokane Ski and Snowboard Park received 91,374 skier visits during the 2013/14 season.

\(^{14}\) For purposes of this analysis, State Parks has identified the reasonably foreseeable future condition of the affected environment for the “no action” alternative based on available climate change statistics, observations and other evidence. The reasonably foreseeable affected environment is consistent with the description of the existing condition, where climate change effects are likely to be important but there is significant uncertainty about their effects on the existing condition.
received adequate snowfall to operate without the addition of snowmaking. However, in recent years, snow deposition has become less consistent, with the critical snowline approaching the 4,100- to 4,200-foot elevation. Operation of Mount Spokane Ski and Snowboard Park, especially early and late in the season, is often restricted due to the lack of snow in the lower terminal and base areas.

3.6.2.4 Night Operations

Currently Chairs 2, 3, and 5 are the only areas operating under lighted conditions. Mount Spokane Ski and Snowboard Park operates night skiing from Wednesday through Saturday. Typically, approximately 20 percent of the overall visitation is attributed to night operations.

3.6.2.5 Non-Alpine Skiing Analysis

Backcountry Winter Recreation

Currently, the area known as the PASEA (located above Chair 4 Road and west of the Chair 4 pod) is primarily utilized by backcountry skiers and snowshoers. This area is also included in the 1997 Concession Agreement between MS 2000 and State Parks. Although specific counts for backcountry users are unavailable it is estimated that on any given weekend or powder day approximately 200 visitors a day use the back side for backcountry skiing or other dispersed recreational activities. When Mount Spokane Ski and Snowboard Park does not provide lift access to the summit of Mount Spokane from the existing base area or during the weekdays, the number of backcountry users in the PASEA is generally less than 30. When the ski area is operating, many skiers who utilize this terrain access the summit of Mount Spokane from the base area via Chair 1, ski through the PASEA and skate along Chair 4 Road to access the bottom terminal of Chair 4 in order to return to the developed ski area. As such, the PASEA currently functions as a round trip, lift-served ski pod, however inefficient. This is unlike a traditional backcountry skiing experience where skiers hike to terrain rather than utilizing a chairlift to facilitate access. Because the PASEA is easily accessed from the summit and is known for its higher snow quality and excellent tree and glade skiing, it has become a popular destination for skiers seeking a lift-served backcountry experience. Accordingly, Mount Spokane has provided emergency response to lost and injured skiers within the PASEA. With a lack of lift access into the PASEA, access to injured or lost skiers requires the ski patrol to first locate the injured/lost skier then transport them via a snowmobile to the bottom terminal of Chair 4, where they are then uploaded to the summit via the chairlift.

Within the greater PASEA area, snowmobiles operated by recreational users regularly use the Chair 4 Road, which lies near the western edge of the expansion area, during winter weekends. This may include 100 or more snowmobiles/day during winter weekends and as many as 20 to 30 snowmobiles/day during weekdays (McQuarrie 2014).

Developed Summer Recreation

Under the conditions of their Concession Agreement with State Parks, Mount Spokane Ski and Snowboard Park is not currently permitted to operate a summer recreation program. Within the expansion area, one mountain bike trail has been constructed by State Parks, which provides access from the Summit
House area to Chair 4 Road and connects to the approximately 90-mile trail system that has been developed within the park.

Dispersed Summer Recreation

Currently, dispersed summer recreational activities take place on State Park lands in the expansion area, including hiking, mountain biking, bird watching, and horseback riding.

3.6.3 Environmental Consequences

3.6.3.1 Alpine Skiing

Alternative 1

Under Alternative 1, the Mount Spokane Ski and Snowboard Park would continue to operate existing chairlifts and trails without any further development. Mount Spokane would continue to operate at a CCC of 2,540 skiers. Under Alternative 1 the existing terrain deficiencies at Mount Spokane would remain unresolved, which would continue to detract from the recreational experience of the Mount Spokane skier. Specifically, with no increase in beginner, novice or low intermediate terrain, Mount Spokane would continue to operate at a terrain deficiency and would not be in a position to respond to the market needs of the public. Beginner skiers making the transition to low-intermediate terrain would continue to be limited to ski terrain served by Chair 3 to *Northwest* or *Half Hitch*. Both of these trails require a long traverse of an existing, highly congested cat track. Over time, Alternative 1 would adversely affect Mount Spokane’s ability to provide sufficient terrain to support the local market, resulting in an incremental loss of clientele to other ski resorts, and a reduction in the recreation experience of their guests.

As a result, it is expected that some skiers in the local market would become increasingly frustrated with skiing at Mount Spokane or would look at other options. Therefore, Alternative 1 would limit the ability of Mount Spokane to meet the demonstrated demand for additional terrain at the ski area. Alternative 1 would also leave unresolved the deficiency in access to injured or lost skiers within the PASEA. Ski patrol would continue to be required to first locate the injured/lost skier then transport them via a sled to the bottom terminal of Chair 4, where they would be uploaded to the summit via the chairlift.

Alternative 2

Alternative 2, as shown in Figure EIS-3, represents Mount Spokane’s Proposed Action.

Under Alternative 2, Mount Spokane proposes to add approximately 85.4 acres of formal ski terrain on seven new trails, all of which would be accessed from the summit of Mount Spokane. Additional terrain would provide desirable and more consistent intermediate skiing. The CCC of Mount Spokane would increase from 2,540 to 3,100 under Alternative 2. As discussed above, this mountain capacity number is derived from the relationship between up and downhill lift capacity. The increased capacity would allow Mount Spokane to better meet the need to serve its market as one of the largest learn-to-ski areas in the Inland Northwest improving the overall recreational experience of the Mount Spokane skier.
Mount Spokane’s terrain and skier distribution under Alternative 2 is shown in Illustration EIS 3.6-3. Overall, the terrain distribution would be improved with the addition of new low intermediate skiing. As a result of the additional terrain at Mount Spokane, demand for intermediate terrain accessed from Chair 3 would be reduced and low intermediate to intermediate skiers would have lift-served access to the most consistent top-to-bottom intermediate level terrain at Mount Spokane. Specifically, the addition of new terrain would reduce skier densities among one of the highest use chairlifts on the mountain and the surplus of intermediate terrain would be reduced in terms of percentage of available terrain.

Under Alternative 2, Mount Spokane would continue to exhibit a shortage of beginner, novice, and low-intermediate terrain. Under Alternative 2, the available ski terrain would be more capable of accommodating the full range of ability levels, consistent with market demand, as compared to existing conditions. The need to match terrain to market demand would be substantially improved with respect to these terrain types. Under Alternative 2, Mount Spokane would be less limited by low snow coverage on the lower mountain, with the new ski trails in the expansion area providing access to terrain with better early and late season snow retention and quality, due to the difference in solar aspect (northerly facing vs. southerly aspect for

15 Intermediate skiers accounted for 41% of visits to ski areas during the 2013/14 ski season and represented the largest portion of the skier market at 46%. (Source: NSAA National Demographic Study 2013/14.)
the existing ski trails). The more favorable slope aspect and the development of skiing in the expansion area would also likely result in generating more consistent skier visitation from year to year when compared to existing conditions. Ski patrol response to lost and disoriented skiers would also be improved with the ability to upload skiers on the new chairlift to the summit of Mount Spokane. Alternative 2 also retains the lift-served backcountry/sidecountry skiing experience within the PASEA by limiting the development of alpine ski facilities to 279 acres. Backcountry skiers would still be able to utilize terrain outside of the formal lift and trail network between the proposed Chair 6 pod and the existing Chair 4 pod, as in the existing condition.

Alternative 3

Under Alternative 3, the terrain distribution by ability level, trail densities, CCC and circulation would essentially be the same as described in Alternative 2. The main differences between Alternative 2 and 3 are that less trail grading would result in more undulations on formal ski trails and would result in short pitches that were off fall line. Therefore, Alternative 3 would result in less of a recreational benefit to ski area guests than Alternative 2. Similar to Alternative 2, the development of skiing in the expansion area would likely result in generating more consistent skier visitation when compared to existing conditions.

3.6.3.2 Non-Alpine Skiing

Alternative 1

In the short-term, Alternative 1 represents no impact to backcountry winter recreation opportunities (e.g., backcountry skiing, dispersed snow shoeing, Nordic skiing) at Mount Spokane. Under Alternative 1, backcountry skiing at Mount Spokane would continue to be as described for existing conditions.

Over the long-term, it is expected that growth in demand for lift-served backcountry skiing at Mount Spokane would exceed average visitation growth at Mount Spokane, due to the growing popularity of backcountry experiences as well as equipment advances (i.e., shaped and fat skis), which heighten the skill levels of alpine skiers, as well as improved skill levels on the part of snowboarders in general. No additional opportunities would be provided for lift-served backcountry skiing.

Under Alternative 1, no new development would take place and the entire PASEA would remain naturally intact. Mechanized rescue of visitors recreating in the PASEA would continue to periodically affect the sense of solitude for backcountry users.

Alternatives 2 and 3

Under Alternatives 2 and 3, Mount Spokane would develop one new chairlift and seven associated ski trails in approximately 279 acres of the 800-acre PASEA. As a result, dispersed backcountry winter recreation opportunities would be eliminated within the 279-acre expansion area. However, this experience would continue to be provided on existing terrain west of the Chair 4 pod and east of the newly developed formal ski terrain in forested areas above the Chair 4 Road.

16 Growth in backcountry skiing would generally follow regional population growth, estimated at roughly 1% per year and growth in dispersed recreation in general, estimated at an additional 1% per year, for a total of 2% per year.
The introduction of alpine ski facilities into the 279-acre expansion area would substantially reduce the opportunities for solitude in the PASEA during the winter operating season. Alpine skiers would be commonly found on the newly developed trails. Skiers using chairlifts on developed slopes occur in concentrations that, while consistent within developed ski areas, do not blend well with dispersed recreation and opportunities for solitude. In addition, the top and bottom terminals of the new chairlift would characteristically experience lift queues and skiers milling in these areas.

3.6.3.3 Developed Summer Recreation

Alternative 1

Developed summer recreational activities under Alternative 1 would be as described in the existing condition.

Alternatives 2 and 3

Construction of a new chairlift and clearing/grading for seven new ski trails would result in temporary impacts to developed summer users (primarily mountain bikers) of the expansion area, as well as a long-term addition to the developed character of the 279-acre Study Area. Under the conditions of Mount Spokane’s Concession Agreement, use of the new chairlift for uphill transport of mountain bikes would not occur under Alternatives 2 or 3.

3.6.3.4 Dispersed Summer Recreation

Alternative 1

Dispersed summer recreational activities under Alternative 1 would be as described in the existing condition.

Alternatives 2 and 3

Construction of a new chairlift and clearing/grading for seven new ski trails would result in temporary impacts to summer users (e.g., hikers, birdwatchers, horseback riders) of the expansion area, as well as a long-term addition to the developed character of the 279-acre Study Area.

3.6.4 Mitigation Measures

Potential direct and indirect effects of the action alternatives would be minimized through implementation of the BMPs and Mitigation Measures described in Table EIS 2-4 and through project specific operational plans.

3.6.5 Cumulative Effects

Cumulative impacts are the effects that may result from the incremental impact of an action when added to other past, present, and reasonably foreseeable future actions. Generally, an impact can be considered cumulative if: a) effects of several actions occur in the same locale; b) effects on a particular resource are similar in nature; and c) effects are long-term in nature. Potential areas where cumulative impacts might
occur to recreation resources as a result of the construction and operation of new ski area facilities are discussed below.

Cumulative impacts to recreation are considered for short-term and long-term impacts. The cumulative effect on recreation is an increase in the quality, quantity and access to varied recreation opportunities in the 279-acre expansion area, including an increase in lift-served backcountry skiing opportunities. Alternatively, the loss of hike-to backcountry and side-country ski terrain at Mount Spokane and other ski areas in their market represents a cumulative effect on backcountry skiing. Additionally, there would be a loss of solitude during the summer as hikers, mountain bikers and other dispersed summer visitors experience new facilities in a previously, relatively undeveloped area. Future projects that could cumulatively impact the Study Area include implementation of the Comprehensive Trail Plan, which is part of the 2010 Master Facilities Plan. The Comprehensive Trail Plan contemplates a multi-use trail in the PASEA, depending upon the land classification adopted (see Section II).

3.7 RESOURCES NOT ANALYZED IN DETAIL

3.7.1 Historic, Cultural, and Archaeological Resources

This section briefly discusses Historic, Cultural, and Archaeological characteristics pertaining to existing conditions and projected impacts within the expansion area.

3.7.1.1 Affected Environment

Mount Spokane State Park has a long history with both Native American and European American cultures that were either indigenous to the area or settled in the Spokane area in the late 19th and early 20th centuries (see Section II, section 3.7.1). The 2009 Cultural Resource Management Plan (CRMP) for Mount Spokane State Park, prepared for the Mount Spokane State Park Master Facilities Plan – DEIS/FEIS, identified and evaluated structures and sites associated with the development of Mount Spokane from the turn of the 20th century to 1960. The Vista house was determined eligible for inclusion on the National Register of Historic Places (NRHP) in 2002. Within the expansion area, no historic, cultural or archaeological resources are presently identified, other than a portion of the proposed Paradise Camp/Summit Area Cultural Landscape and Cook’s Auto Road.

3.7.1.2 Environmental Consequences

Alternative 1

Alternative 1 would have no effect on historic, cultural or archeological resources. There would be no ground-disturbing activities occurring within the expansion area under Alternative 1. Current uses within the ski area and within the expansion area would remain unchanged.

Alternatives 2 and 3

Under both action alternatives, there would be no effect on known historic, cultural or archaeological resources as none are formally recorded, to date, within the expansion area. However, a number of historic structures are identified nearby and portions of the proposal would occur within a proposed
boundary for a potential cultural landscape. Approximately 38 acres related to the proposed expansion area are located within the cultural landscape boundary identified in the 2009 Cultural Resources Management Plan for Mount Spokane State Park.

Potential direct or indirect effects on undiscovered historic, cultural or archaeological resources related to the action alternatives are limited to tree removal, ground-disturbing activities, and visual impacts. Archaeological surveys and monitoring would mitigate the relative risk of impacting as yet unidentified resources. No previous cultural resources surveys have been conducted in the majority of the expansion area; however, steep slopes, vegetation, and timber deadfall limit the effectiveness of ground survey for identifying historic, cultural or archaeological resources.

The Paradise Camp/Summit Area Cultural Landscape contains sixteen individual buildings, structures, and objects. These features were documented on Historic Property Inventory Forms and submitted to DAHP for concurrence on eligibility for the National Register of Historic Places in December of 2012. Of these, ten were determined by DAHP to be eligible for listing on the NRHP including the Vista House, the Latrine, Woodshed, and Reservoir at Cook’s Camp, CCC Camp Francis Cook, Cook’s Auto Road, the Headquarters Building at CCC Camp Cook, the Memorial to Spokane County War Dead, the Boy Scout Memorial, and the View Tubes. Of these eligible resources, only Cook’s Auto Road lies within the proposed expansion alternatives area. Others are nearby, and the expansion area alternatives overlap slightly with the cultural landscape boundary as defined in the 2009 CRMP. The six features determined to be not eligible for the NRHP include the remains of a CCC telephone line, the original Mt. Spokane Lodge remains, the unfinished Beauty Mountain Latrine, the remains of the Caretaker’s Residence in the Cook’s Cabin area, communications facilities near the summit, and Chair #1. If it is determined that the action alternatives represent an adverse effect on NRHP eligible resources under applicable cultural resource regulations, then appropriate mitigation measures will be determined by State Parks, DAHP, affected tribes, and other consulting parties in advance of any project logging or construction in the cultural landscape area.

Mitigation Measures

In the event prehistoric sites, culturally modified trees, artifacts, or human remains are identified during project construction, work in the immediate discovery area will cease until a State Parks Archaeologist can evaluate the resource. Affected tribes will also be notified. That evaluation will include additional consultation with DAHP and affected Tribes. Additional mitigation measures proposed for this resource are included in Table EIS 2.4.

3.7.2 Air Quality

This section briefly discusses air quality characteristics pertaining to existing conditions and potential impacts within the expansion area and adjacent ski area.
3.7.2.1 Affected Environment

The air quality in the park is considered good to excellent and is affected primarily by activities in the lower elevation rather than in-park activities (Washington State Parks 2010a). Air quality and visibility within Mount Spokane State Park and the surrounding area follows patterns strongly influenced by weather and topography. Local air quality in the Study Area is primarily affected by emissions from the use of fireplaces, summer dust storms, and motorized vehicles and occasional nearby wildfires. Air quality in Spokane County is considered good during the winter with air quality monitoring conducted around-the-clock via a network of ten air monitoring sites (Spokane Regional Clean Air Agency 2014).

3.7.2.2 Environmental Consequences

Alternative 1

Under Alternative 1, impacts to air quality from the current operation at Mount Spokane would not change.

Alternatives 2 and 3

Overall, potential impacts to air quality from project implementation are not anticipated to be significant. Minor short and long-term air quality impacts can be expected as a result of the project during the construction phase and as a result of continued operation. Each is discussed below.

Short-Term Air Quality Impacts

Construction activities can be expected to result in limited, short-term air quality impacts, resulting from the movement of heavy equipment. Construction activities would be temporary and would occur in a localized area. Airborne contaminants generated from construction would include particulate matter, vehicle emissions, and increased windborne dust (i.e., fugitive dust).

Vehicular emissions from construction equipment and construction worker vehicles are anticipated to have very minimal short-term impacts.

Long-Term Air Quality Impacts

Air quality in Spokane County is considered good during the winter with air quality monitoring conducted around-the-clock via a network of ten air monitoring sites (Spokane Regional Clean Air Agency 2014). The only long-term air quality impact that is anticipated to result from this project is related to the potential increase in visitation and corresponding increase in vehicle traffic. The primary pollutants associated with vehicular exhaust emissions are nitrous oxides and carbon monoxide (NOx and CO). Despite this increase in vehicle traffic over time, vehicular exhaust emissions are consistently being reduced through technological innovations. As a result, individual vehicle contributions to air quality can be expected to decrease over the course of time. Therefore, this relatively low level of increased vehicular traffic would not result in measureable direct or indirect impact to local and regional air quality under Alternatives 2 and 3.
Mitigation Measures

Short-term, construction-related fugitive dust and emissions will be minimized through the employment of best management practices (BMPs). Standard construction BMPs that may be implemented to control, reduce or eliminate adverse impacts to air quality include, but are not limited to, routine watering of the construction/access roads and excavation sites (see Table EIS 2-4). Additionally, all construction equipment would be maintained in good working order, as well as minimizing the amount of idling equipment.

3.7.3 Noise

This section briefly discusses noise characteristics pertaining to existing conditions and projected impacts within the expansion area and adjacent ski area.

3.7.3.1 Affected Environment

Mount Spokane Ski and Snowboard Park and the expansion area are located in a relatively remote forested area and the surrounding vicinity is sparsely populated. The largest summer noise generator within the area is from State Park guests in vehicles traveling on North Summit Road to access the Vista House. The noise level varies with traffic density and can be heard on the upper slopes of the existing ski area.

The primary noise generators during the winter are existing chairlifts, grooming equipment, and snowmobile activity associated with ski area operations. Typical background noise levels in coniferous recreational areas range from 35 to 45 dBA in the summer daytime and 30 to 35 dBA in the winter daytime (USDA Forest Service 2007). Sound levels within the existing ski area are not uncharacteristic for this type of land use, as vegetation and snow cover absorb nearly all of the human caused noise. Even during winter operations, the noise level in the existing ski area remains near background. Electric motors used on the chairlifts increase noise levels above background in the vicinity of these facilities. In addition, the passing of snow groomers and snowmobiles used for administration and maintenance occasionally breaks the natural silence; however, noise generated by chairlifts, grooming equipment or ski area-associated equipment has not typically been found to be a nuisance to people utilizing ski area facilities.

3.7.3.2 Environmental Consequences

Alternative 1

Under Alternative 1, this resource would be as described above.

Alternatives 2 and 3

Under Alternatives 2 and 3, chairlift noise would be introduced into the expansion area as facilities become operational. Given the close proximity of the top terminal of the new chairlift to existing chairlifts at the summit of Mount Spokane, the noise generated by the chairlift terminal, ski area users and grooming equipment would be similar to the existing condition within the developed ski area.
During construction of the chairlift and trails in the expansion area, noise associated with excavation and construction of the new chairlift and trails would be the most noticeable impacts associated with the project proposal, and would occur over the period of one summer. During construction, there would be a temporary increase in noise levels in the expansion area, as well as in adjacent areas of the summit area, due to the use of various types of construction equipment and the hauling of materials within the expansion area. Construction noise impacts would be localized, short-term, and generally limited to daytime hours during the summer of construction. The exact noise levels would depend on the type of equipment being used and the duration of use. The types of ground equipment used for this project would typically generate noise levels between 80 and 90 dBA at a distance of 50 feet while equipment is operating.

Mitigation Measures

Notices would be posted on summit trailheads and at the Vista House informing visitors about the possible construction noise that might be audible to them (see Mitigation Measures Incorporated into the Project Proposal). Construction will be scheduled to occur when there is the least impact to species during breeding and nesting periods, where practical.

3.7.4 Land Use

This section briefly discusses Land Use characteristics pertaining to existing and proposed conditions within the expansion area and adjacent ski area.

3.7.4.1 Affected Environment

WAC 352-16-020 establishes a Land Classification System (LCS) for management of State Park Lands (see Appendix F). The LCS is a system of management zoning for park lands and waters that sets forth, in a general fashion, the basic philosophy, physical features, location, activities, and developments in a park. When assigned to a specific area within a park, each classification sets an appropriate intensity for recreational activities and facilities development. Classifications are aligned along a spectrum ranging from low to high-intensity recreational uses and developments. By classifying park lands, the agency is able to consciously strike a balance between protecting park resources and providing an appropriate variety of recreational opportunities to park visitors. As noted in Section I, Chapter 2 – Background, as part of its October 1999 classification action for Mount Spokane State Park, the Commission left the PASEA as an unclassified area within the 13,000-acre Park in order to further study what the eventual classification should be, particularly within the context of a potential expansion of Mount Spokane Ski and Snowboard Park.

The LCS includes six classifications: Natural Area Preserve, Natural Areas, Natural Forest Area, Resource Recreation Area, Recreation Area, and Heritage Area. Of these classifications only Recreation and Resource Recreation would allow alpine skiing as a conditional use. The Commission would have to allocate one of these two classifications to the 279-acre expansion area for the project to move forward.
and allow for the development of the chairlift and trail corridors. Appendix F summarizes the specific direction for each classification, including allowed and prohibited developments.

County Zoning and Approvals

The expansion area lies within Spokane County and is subject to local land use regulations. Developments within the park must also receive approval from other State and Federal jurisdictions for specific projects (see Table EIS 2-4).

Spokane County has zoned Mount Spokane State Park as (Rural Conservation (RCV); it defined RCV as:

> “Rural Conservation: The Rural Conservation category applies to environmentally sensitive areas, including critical areas and wildlife corridors. Criteria to designate boundaries for this category were developed from Spokane County's Critical Areas program and a study by the University of Washington titled, Wildlife Corridors and Landscape Linkages, An Approach to Biodiversity Planning for Spokane County, Washington. The category will encourage low-impact uses and utilize clustering and/or other open space techniques to protect sensitive areas and preserve open space. Density: The density of the Rural Conservation category is 1 dwelling unit per 20 acres, with a bonus density of 1 dwelling unit per 10 acres.”

Within the RCV zone, winter recreation areas, including downhill, Nordic/cross-country skiing, snowmobiling and ice-skating are outright permitted uses under the Spokane County Zoning Code.

3.7.4.2 Environmental Consequences

Alternative 1

Under the No Action Alternative there would be no overall change in land use within the expansion area. Dispersed winter recreation (i.e., backcountry skiing) would continue to occur within the expansion area. No Federal, State or local approvals would be required under Alternative 1.

Alternatives 2 and 3

Under Alternatives 2 and 3, lift-served alpine skiing would be introduced into the 279-acre expansion area. Such a development would be dependent on a Commission classification of the lands in the expansion area as Recreation or Resource Recreation, based upon the outcome/decision from the non-project EIS process. Any relevant Federal, State, and local permits would be obtained prior to commencement of project activities (see Table EIS 2-4).

Mitigation Measures

No specific mitigation measures are proposed.

3.7.5 Transportation and Parking

This section briefly discusses Transportation and Parking characteristics pertaining to existing and proposed conditions within the expansion area and adjacent ski area.
Section III. Mount Spokane State Park Proposed Ski Area Expansion
Final Environmental Impact Statement

3.7.5.1 Affected Environment
Accessibility to Mount Spokane Ski and Snowboard Park is provided by U.S. Highway 206 which is in good condition and is maintained daily by the State. The State Park access road to the base area is an asphalt surface in mostly good condition and is maintained daily by State Park Staff.

Mount Spokane Ski and Snowboard Park experiences visitation that is typical for regional, day use facilities. The majority of the ski area’s visitation and peak parking demand occurs on weekends and holidays. Conversely, weekdays generally receive modest use, and Mount Spokane Ski and Snowboard Park has relatively low demand for parking.

Parking lots located near Lodge 1 and 2 provide capacity for approximately 1,000 vehicles. Based on average vehicle occupancy (AVO) of 2.7 people per car, the current parking accommodates approximately 2,700 people. On peak days, guests park along the access road and/or over-flow into the Nordic lot. Employee parking is located outside the main parking area at the entrance to the concession area, and employees are required to utilize the shuttle to get to their designated work areas. Parking staff is assigned to the parking areas to help facilitate efficient parking at the main parking area at Lodge 2. In 2008 Mount Spokane began subsidizing the regular and scheduled busing programs from Spokane to the ski area on weekends and holidays, as well as providing parking for employees at the entrance to the concession area (Lot 3), which has eliminated any previously experienced parking shortage. During peak operations, three shuttles run full time transferring staff and guests from outside the main parking area to Lodge 2. The 2010/11 ski season resulted in the second highest visitation on record since the concessionaire began operating the ski area. Visitation peaked on Martin Luther King holiday, where Mount Spokane provided parking for approximately 1,032 vehicles, with additional capacity remaining.

3.7.5.2 Environmental Consequences
Alternative 1
Under Alternative 1, no changes to the parking situation would occur. No new facilities would be constructed; therefore, demand for parking at Mount Spokane would not change. Mount Spokane would continue to experience high demand for parking during weekends and holidays, with relatively low demand on weekdays.

Alternatives 2 and 3
Alternatives 2 and 3 would not include the construction of any additional parking at Mount Spokane. Parking capacity and ski area access would remain as described under the existing condition. Through the implementation of the mitigation measures (detailed below) and the existing ability to park approximately 2,700 guests at the existing parking lots at Mount Spokane, parking would continue to be limited, but is not anticipated to exceed supply during peak days.

As the intent of both action alternatives is to better match terrain to the skier market demand it is anticipated that visitation would increase if either Alternative 2 or 3 was implemented. Increased visitation would also increase demand for parking at existing lots. Should demand for parking approach
capacity due to the implementation of Alternative 2 or 3, Mount Spokane Ski and Snowboard Park would address the increased parking demand through a combination of improved snow management in the existing parking lots, increasing the subsidy/add additional service to the shuttle system from Spokane, and/or develop a dedicated shuttle service from the Snow Blaze Condominiums. Therefore, it is not anticipated that parking demand would exceed supply.

Mitigation Measures

Mount Spokane Ski and Snowboard Park would improve AVO through the use of incentives for carpooling and more efficient utilization of the regular and scheduled busing programs from Spokane to the ski area on weekends and holidays.

3.7.6 Public Services

This section briefly discusses Public Services characteristics pertaining to existing and proposed conditions within the PASEA and adjacent ski area.

3.7.6.1 Affected Environment

Volunteer Ski Patrol

Within the Concession Area, search and rescue and first responder duties are performed by the all-volunteer Mount Spokane Ski Patrol. The ski patrol responds to emergencies and provides rapid transportation from the mountain to Mt Spokane’s First Aid facility, while coordinating with local air or ground ambulance support. Large searches may involve the Spokane County Sheriff’s Department, the Winter Knights, the Mount Spokane Ski Patrol, and, in some cases, the Washington Air National Guard. Every year, the ski patrol has provided emergency response to lost and injured skiers and snowshoers within the greater PASEA and areas easily accessed off the Chair 4 Road on almost a weekly basis, which taxes the resources of the organization. Specifically, access to injured or lost skiers and snowshoers requires the ski patrol to first locate the injured/lost skier/snowshoer then transport them via a sled to the Chair 4 Road, and then pull the sled via snowmobile to the bottom terminal of Chair 4, where they are then uploaded to the summit via the chairlift. During the 2012/13 ski season 20 people were reported missing on the backside of the ski area, which required a search by ski patrol. One example of the type of rescue seen in or around the PASEA occurred during the 2013/14 ski season. Two snowshoers hiked to the summit of Mount Spokane then downslope through the PASEA. Once on the Chair 4 Road they became disoriented and lost from early afternoon until the next morning when they were found by Spokane County Search and Rescue. Minor rescue operations occur multiple times a week or in some peak visitation days, several times a day. The ski area estimates 30 to 40 minor incidents are being reported each year.

Police Services

Park Rangers are the point of first contact for police services at the Park, with backup as needed from the Spokane County Sheriff’s Office.
Fire Protection
Structural fire protection is provided through contract with the Mead Fire District. The Washington Department of Natural Resources is responsible for wildland fire control.

Emergency Medical Services
The Mead Fire District provides emergency services at the Park.

Community Services
Community services, such as medical services, housing, schools, and other public services, are provided by the Mead School District, City of Mead and Spokane County.

3.7.6.2 Environmental Consequences

Alternative 1
Under the No Action Alternative there would be no increase or decrease in demand for public services. Because the PASEA in general is easily accessed from the summit and is known for its higher snow quality and tree and glade skiing, the undeveloped backside would continue to tax the resources of its all-volunteer ski patrol as skiers and snowshoers become lost or injured in the relatively remote portion of the Concession Area.

Alternatives 2 and 3
Under Alternatives 2 and 3, no significant increase in demand for public services is expected. Overall, the project would likely result in a net benefit to emergency services within the expansion area by providing increased access to a relatively remote area that currently sees several ski patrol rescues a year as ski area visitors either get lost or injured while backcountry skiing or snowshoeing. Providing lift-served, access to the expansion area in combination with directional signage on new trails would likely reduce the number of visitors who get disoriented and lost within the undeveloped area between the 279-acre expansion area and Chair 4 pod as well as improve ski patrol response time.

Mitigation Measures
No specific mitigation measures are proposed.

3.7.7 Environmental Health
This section briefly discusses Environmental Health characteristics pertaining to existing and proposed conditions within the expansion area and adjacent ski area.

3.7.7.1 Affected Environment
Mount Spokane Ski and Snowboard Park has a broad range of facilities normally associated with developed winter recreation activities, including two ski lodges, five double chairlifts, a vehicle maintenance facility, and a water storage facility providing potable water to the existing facilities. Additionally, Mount Spokane provides parking for approximately 1,000 vehicles. Vehicle exhaust, noise, and traffic normally associated with developed winter recreational activities are present. However,
because the ski area is relatively isolated from adjacent private lands, it is unlikely that exhaust, noise, and traffic generated by ski area users would affect adjacent property owners or the general public.

3.7.7.2 Environmental Consequences

Alternative 1

Under Alternative 1, no new projects would be implemented at Mount Spokane. No increase in vehicle use, traffic or vehicle exhaust would occur. No new construction would occur within the expansion area; therefore, there would be no possibility of incidental leaking of toxic chemicals (e.g., diesel fuel, oil) from construction equipment that could pose an environmental risk.

Alternatives 2 and 3

Under Alternatives 2 and 3, a Spill Prevention and Response Plan (SPRP) will be included in the SWPPP as part of the construction documents in order to reduce the risk of toxic chemicals (e.g., diesel fuel, oil) entering the environment. Fire extinguishers would also be stationed on all construction equipment to reduce the risk of inadvertent fire and explosion.

Mitigation Measures

As described above, Mount Spokane would develop a SPRP as part of the construction documents in order to reduce the risk of toxic chemicals entering the environment. Fire extinguishers would also be stationed in work areas to reduce the risk of wildfire. New developments will comply with any applicable local, State and Federal regulations.

3.7.8 Utilities

This section briefly discusses utility characteristics pertaining to existing and proposed conditions within the expansion area and adjacent ski area.

3.7.8.1 Affected Environment

Mount Spokane Ski and Snowboard Park receives electrical power through service from Inland Power. Power arrives and is distributed via underground cable. Inland Power also provides power to the TV/communications towers at the summit of Mount Spokane.

3.7.8.2 Environmental Consequences

Alternative 1

Alternative 1 would not generate any changes to the utility infrastructure serving Mount Spokane Ski and Snowboard Park.

Alternatives 2 and 3

Under Alternatives 2 and 3 a new chairlift would be constructed within the 279-acre expansion area. The new chairlift would be electrically powered with a diesel-fired back-up system for emergency power in the event of an outage. This backup system would require storage of diesel fuel in an above-ground tank. When the original ski area was developed, a power line was run to the summit of Mount Spokane to
provide power for the chairlifts. The existing power line has sufficient capacity to provide energy for another top drive chairlift. As a result, under Alternatives 2 and 3 a utility spur would be constructed and installed at the terminal site.

Mitigation Measures

No specific mitigation measures are proposed.

4. LIST OF PREPARERS

4.1 PROJECT MANAGEMENT TEAM

<table>
<thead>
<tr>
<th>Contributor</th>
<th>Education and Experience</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE GROUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ted Beeler</td>
<td>Bachelor of Science, University of Utah, 1974; Master of Urban Planning, University of Michigan, 1977</td>
<td>Principal, Recreation</td>
</tr>
<tr>
<td>Chris Ward</td>
<td>B.S. Forest Resource Management, University of Missouri – Columbia, 1997</td>
<td>Project Manager, Vegetation, Visual Resources, Recreation, Watershed Resources, Wildlife, Soils and Geology, Resources not Analyzed in Detail</td>
</tr>
<tr>
<td>Environmental Planner/Forester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelly Owens</td>
<td>B.A. Environmental Science, Colorado College, 2003; Master of Biology – Soil Science; University of Denver, 2009</td>
<td>Technical Writing – Soils and Geology</td>
</tr>
<tr>
<td>Mitch Lefevre</td>
<td>B.S. Landscape Architecture, University of Massachusetts – Amherst, 2007</td>
<td>Visual Simulations</td>
</tr>
<tr>
<td>Peter Williams</td>
<td>B.A. Human Ecology, College of the Atlantic, Bar Harbor, Maine, 1993</td>
<td>Recreation</td>
</tr>
<tr>
<td>Ben Warren</td>
<td>B.A. Landscape Architecture, Utah State University, 2010</td>
<td>Mapping, Recreation</td>
</tr>
<tr>
<td>ICF INTERNATIONAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bill Baber</td>
<td>B.S. Biology, Washington State University, 1990</td>
<td>Watershed Resources, Vegetation, Wildlife, Appendix D, Appendix E</td>
</tr>
<tr>
<td>Matt Kuziensky</td>
<td>B.A. Botany, Miami University, 1991; Master of Environmental Science, Miami University, 1994</td>
<td></td>
</tr>
<tr>
<td>Pablo Herrera</td>
<td>B.S. Wildlife Biology, Humboldt State University, 1999</td>
<td></td>
</tr>
<tr>
<td>Troy Rahmig</td>
<td>B.S. Biology, Truman State University, 1999, Master of Science, Biology, Truman State University, 2001.</td>
<td></td>
</tr>
</tbody>
</table>
5. REFERENCES

Crawford. 1993. (used in Resources consulted include existing literature and GIS datasets in the Mount Spokane area (Smith and Morrison 2009; Smith 2009; Snetsinger and White 2009; Wooten and others 2009; Morrison and others 2007; Crawford 1993).

U.S. Fish and Wildlife Service. 2009. Decision to Delist Gray Wolves in Western Great Lakes, Portion of Northern Rockies.

